Shanbo Ma , Conghui Han , Xi Chen , Long Li , Xushuai Chen , Wei Zhang , Jin Wang , Fu Han , Luke Yan , Xiaopeng Shi
{"title":"可持续释放臭氧的自愈合粘合水凝胶:增强抗菌性能,改善伤口愈合。","authors":"Shanbo Ma , Conghui Han , Xi Chen , Long Li , Xushuai Chen , Wei Zhang , Jin Wang , Fu Han , Luke Yan , Xiaopeng Shi","doi":"10.1016/j.jconrel.2024.10.053","DOIUrl":null,"url":null,"abstract":"<div><div>Antibacterial hydrogels have generated significant interest for their potential therapeutic applications. Ozone (O₃) is recognized for its antibacterial, anti-inflammatory, immunomodulatory, and anti-hypoxic properties, along with its minimal residual impact. However, the development of sustained O₃-release antibacterial hydrogels has been challenging due to the low solubility and short lifespan of ozone. We present an ozone-loaded emulsion hydrogel (ozonegel), which encapsulates ozonized oil within a nanoclay-poly(methacryloxyethyl sulfobetaine) supramolecular network. This adhesive, self-healing ozonegel achieves high ozone loading (91.3 mmol/kg) and releases O₃ and reactive oxygen species (ROS) over 36 h. It demonstrates broad antibacterial and anti-inflammatory effects, promoting wound healing. The remarkable properties of ozonegels suggest significant potential for advanced biomedical applications.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"377 ","pages":"Pages 212-222"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-healing adhesive hydrogels for sustained ozone release: Enhanced antibacterial properties and improved wound healing\",\"authors\":\"Shanbo Ma , Conghui Han , Xi Chen , Long Li , Xushuai Chen , Wei Zhang , Jin Wang , Fu Han , Luke Yan , Xiaopeng Shi\",\"doi\":\"10.1016/j.jconrel.2024.10.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Antibacterial hydrogels have generated significant interest for their potential therapeutic applications. Ozone (O₃) is recognized for its antibacterial, anti-inflammatory, immunomodulatory, and anti-hypoxic properties, along with its minimal residual impact. However, the development of sustained O₃-release antibacterial hydrogels has been challenging due to the low solubility and short lifespan of ozone. We present an ozone-loaded emulsion hydrogel (ozonegel), which encapsulates ozonized oil within a nanoclay-poly(methacryloxyethyl sulfobetaine) supramolecular network. This adhesive, self-healing ozonegel achieves high ozone loading (91.3 mmol/kg) and releases O₃ and reactive oxygen species (ROS) over 36 h. It demonstrates broad antibacterial and anti-inflammatory effects, promoting wound healing. The remarkable properties of ozonegels suggest significant potential for advanced biomedical applications.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"377 \",\"pages\":\"Pages 212-222\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365924007260\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365924007260","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Self-healing adhesive hydrogels for sustained ozone release: Enhanced antibacterial properties and improved wound healing
Antibacterial hydrogels have generated significant interest for their potential therapeutic applications. Ozone (O₃) is recognized for its antibacterial, anti-inflammatory, immunomodulatory, and anti-hypoxic properties, along with its minimal residual impact. However, the development of sustained O₃-release antibacterial hydrogels has been challenging due to the low solubility and short lifespan of ozone. We present an ozone-loaded emulsion hydrogel (ozonegel), which encapsulates ozonized oil within a nanoclay-poly(methacryloxyethyl sulfobetaine) supramolecular network. This adhesive, self-healing ozonegel achieves high ozone loading (91.3 mmol/kg) and releases O₃ and reactive oxygen species (ROS) over 36 h. It demonstrates broad antibacterial and anti-inflammatory effects, promoting wound healing. The remarkable properties of ozonegels suggest significant potential for advanced biomedical applications.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.