用于疟疾治疗的配体系留阿托伐醌-丙二胍负载纳米颗粒的制备、优化和评估。

IF 3.6 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Anasuya Patil, Gurinderdeep Singh, Rajendra Dnyandeo Dighe, Dhruv Dev, Bhaveshkumar A Patel, Samatha Rudrangi, Gaurav Tiwari
{"title":"用于疟疾治疗的配体系留阿托伐醌-丙二胍负载纳米颗粒的制备、优化和评估。","authors":"Anasuya Patil, Gurinderdeep Singh, Rajendra Dnyandeo Dighe, Dhruv Dev, Bhaveshkumar A Patel, Samatha Rudrangi, Gaurav Tiwari","doi":"10.1080/09205063.2024.2422704","DOIUrl":null,"url":null,"abstract":"<p><p>This work focused on improving antimalarial therapy through the development and characterization of Atovaquone-Proguanil-loaded nanoparticles employing a 3<sup>2</sup> factorial design. The nanoparticles were prepared from combinations of Poly(lactic-co-glycolic acid) (PLGA) and Eudragit L100 polymers and different concentrations of PVA (polyvinyl alcohol). Based on the results obtained the formulations were characterized for the particle size, zeta potential, encapsulation efficiency, and percent drug release. Among the nine formulations, F5 proved to be the most favorable in the biophysical parameters with a particle size of 176.3 nm, a zeta potential of -33.5 mV, and an encapsulation efficiency of 86% was found in the present investigation. Experimental dissolution profile analysis indicated that F5 had a slow and controlled-release profile where approximately 92.5%. Besides, cytotoxicity studies employing MTT, LDH (lactate dehydrogenase), and Trypan blue reduction test also supported the biocompatibility of nanoparticles and F5 had the highest cell viability (96%) with the least LDH release of 4%. In stability studies conducted for six months, F5 was found to remain stable regarding physicochemical characteristics and drug release profile at different temperature conditions such as room temperature, 4 °C, and 45 °C. The use of folic acid-functionalized nanoparticles is more effective, according to parasitemia, survival rate, and weight loss in mice treated with the nanoparticles. This is because functionalized nanoparticles could be used to enhance anti-malarial therapies.</p>","PeriodicalId":15195,"journal":{"name":"Journal of Biomaterials Science, Polymer Edition","volume":" ","pages":"1-32"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation, optimization, and evaluation of ligand-tethered atovaquone-proguanil-loaded nanoparticles for malaria treatment.\",\"authors\":\"Anasuya Patil, Gurinderdeep Singh, Rajendra Dnyandeo Dighe, Dhruv Dev, Bhaveshkumar A Patel, Samatha Rudrangi, Gaurav Tiwari\",\"doi\":\"10.1080/09205063.2024.2422704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work focused on improving antimalarial therapy through the development and characterization of Atovaquone-Proguanil-loaded nanoparticles employing a 3<sup>2</sup> factorial design. The nanoparticles were prepared from combinations of Poly(lactic-co-glycolic acid) (PLGA) and Eudragit L100 polymers and different concentrations of PVA (polyvinyl alcohol). Based on the results obtained the formulations were characterized for the particle size, zeta potential, encapsulation efficiency, and percent drug release. Among the nine formulations, F5 proved to be the most favorable in the biophysical parameters with a particle size of 176.3 nm, a zeta potential of -33.5 mV, and an encapsulation efficiency of 86% was found in the present investigation. Experimental dissolution profile analysis indicated that F5 had a slow and controlled-release profile where approximately 92.5%. Besides, cytotoxicity studies employing MTT, LDH (lactate dehydrogenase), and Trypan blue reduction test also supported the biocompatibility of nanoparticles and F5 had the highest cell viability (96%) with the least LDH release of 4%. In stability studies conducted for six months, F5 was found to remain stable regarding physicochemical characteristics and drug release profile at different temperature conditions such as room temperature, 4 °C, and 45 °C. The use of folic acid-functionalized nanoparticles is more effective, according to parasitemia, survival rate, and weight loss in mice treated with the nanoparticles. This is because functionalized nanoparticles could be used to enhance anti-malarial therapies.</p>\",\"PeriodicalId\":15195,\"journal\":{\"name\":\"Journal of Biomaterials Science, Polymer Edition\",\"volume\":\" \",\"pages\":\"1-32\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Science, Polymer Edition\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/09205063.2024.2422704\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Science, Polymer Edition","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/09205063.2024.2422704","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的重点是采用 32 因式设计,通过开发和表征阿托伐醌-普罗加尼负载纳米粒子来改进抗疟治疗。纳米颗粒由聚(乳酸-共聚-乙醇酸)(PLGA)和 Eudragit L100 聚合物以及不同浓度的 PVA(聚乙烯醇)组合制备而成。根据所得结果,对配方的粒度、ZETA电位、封装效率和药物释放率进行了表征。在这九种配方中,F5 的生物物理参数最优越,其粒径为 176.3 nm,zeta 电位为 -33.5 mV,封装效率为 86%。实验溶解曲线分析表明,F5 的缓释和控释曲线约为 92.5%。此外,采用 MTT、LDH(乳酸脱氢酶)和胰蓝还原试验进行的细胞毒性研究也证明了纳米颗粒的生物相容性,其中 F5 的细胞存活率最高(96%),LDH 释放量最少,仅为 4%。在为期 6 个月的稳定性研究中,发现 F5 在室温、4 ℃ 和 45 ℃ 等不同温度条件下,其理化特性和药物释放曲线均保持稳定。根据使用叶酸功能化纳米粒子治疗的小鼠的寄生虫血症、存活率和体重减轻情况,使用叶酸功能化纳米粒子更为有效。这是因为功能化纳米粒子可用于加强抗疟疾疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation, optimization, and evaluation of ligand-tethered atovaquone-proguanil-loaded nanoparticles for malaria treatment.

This work focused on improving antimalarial therapy through the development and characterization of Atovaquone-Proguanil-loaded nanoparticles employing a 32 factorial design. The nanoparticles were prepared from combinations of Poly(lactic-co-glycolic acid) (PLGA) and Eudragit L100 polymers and different concentrations of PVA (polyvinyl alcohol). Based on the results obtained the formulations were characterized for the particle size, zeta potential, encapsulation efficiency, and percent drug release. Among the nine formulations, F5 proved to be the most favorable in the biophysical parameters with a particle size of 176.3 nm, a zeta potential of -33.5 mV, and an encapsulation efficiency of 86% was found in the present investigation. Experimental dissolution profile analysis indicated that F5 had a slow and controlled-release profile where approximately 92.5%. Besides, cytotoxicity studies employing MTT, LDH (lactate dehydrogenase), and Trypan blue reduction test also supported the biocompatibility of nanoparticles and F5 had the highest cell viability (96%) with the least LDH release of 4%. In stability studies conducted for six months, F5 was found to remain stable regarding physicochemical characteristics and drug release profile at different temperature conditions such as room temperature, 4 °C, and 45 °C. The use of folic acid-functionalized nanoparticles is more effective, according to parasitemia, survival rate, and weight loss in mice treated with the nanoparticles. This is because functionalized nanoparticles could be used to enhance anti-malarial therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Science, Polymer Edition
Journal of Biomaterials Science, Polymer Edition 工程技术-材料科学:生物材料
CiteScore
7.10
自引率
5.60%
发文量
117
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Science, Polymer Edition publishes fundamental research on the properties of polymeric biomaterials and the mechanisms of interaction between such biomaterials and living organisms, with special emphasis on the molecular and cellular levels. The scope of the journal includes polymers for drug delivery, tissue engineering, large molecules in living organisms like DNA, proteins and more. As such, the Journal of Biomaterials Science, Polymer Edition combines biomaterials applications in biomedical, pharmaceutical and biological fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信