Dong Li, Suzanne Jan de Beur, Cuiping Hou, Maura Rz Ruzhnikov, Hilary Seeley, Garry R Cutting, Molly B Sheridan, Michael A Levine
{"title":"NESP55/NESPAS中的复发性小变异与广泛的GNAS甲基化缺陷和假性甲状旁腺功能减退症1b型有关","authors":"Dong Li, Suzanne Jan de Beur, Cuiping Hou, Maura Rz Ruzhnikov, Hilary Seeley, Garry R Cutting, Molly B Sheridan, Michael A Levine","doi":"10.1172/jci.insight.185874","DOIUrl":null,"url":null,"abstract":"<p><p>Pseudohypoparathyroidism type 1B (PHP1B) is associated with epigenetic changes on the maternal allele of the imprinted GNAS gene that inhibit expression of the alpha subunit of Gs (Gsα), thereby leading to parathyroid hormone resistance in renal proximal tubule cells where expression of Gs from the paternal GNAS allele is normally silent. Although all patients with PHP1B show loss of methylation for the exon A/B differentially methylated region (DMR), some patients with autosomal dominant PHP1B (AD-PHP1B) and most patients with sporadic PHP1B have additional methylation defects that affect the DMRs corresponding to exons XL, AS1, and NESP. Because the genetic defect is unknown in most of these patients, we sought to identify the underlying genetic basis for AD-PHP1B in two multigenerational families with broad GNAS methylation defects and negative clinical exomes. Genome sequencing identified small GNAS variants in each family that were also present in unrelated PHP1B subjects in a replication cohort. Maternal transmission of one GNAS microdeletion showed reduced penetrance in some unaffected patients. Expression of AS transcripts was increased, and NESP was decreased, in cells from affected patients. These results suggest that the small deletion activate AS transcription leading to methylation of the NESP DMR with consequent inhibition of NESP transcription, and thereby provide a potential mechanism for PHP1B.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent Small Variants in NESP55/NESPAS Associated with Broad GNAS Methylation Defects and Pseudohypoparathyroidism Type 1b.\",\"authors\":\"Dong Li, Suzanne Jan de Beur, Cuiping Hou, Maura Rz Ruzhnikov, Hilary Seeley, Garry R Cutting, Molly B Sheridan, Michael A Levine\",\"doi\":\"10.1172/jci.insight.185874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pseudohypoparathyroidism type 1B (PHP1B) is associated with epigenetic changes on the maternal allele of the imprinted GNAS gene that inhibit expression of the alpha subunit of Gs (Gsα), thereby leading to parathyroid hormone resistance in renal proximal tubule cells where expression of Gs from the paternal GNAS allele is normally silent. Although all patients with PHP1B show loss of methylation for the exon A/B differentially methylated region (DMR), some patients with autosomal dominant PHP1B (AD-PHP1B) and most patients with sporadic PHP1B have additional methylation defects that affect the DMRs corresponding to exons XL, AS1, and NESP. Because the genetic defect is unknown in most of these patients, we sought to identify the underlying genetic basis for AD-PHP1B in two multigenerational families with broad GNAS methylation defects and negative clinical exomes. Genome sequencing identified small GNAS variants in each family that were also present in unrelated PHP1B subjects in a replication cohort. Maternal transmission of one GNAS microdeletion showed reduced penetrance in some unaffected patients. Expression of AS transcripts was increased, and NESP was decreased, in cells from affected patients. These results suggest that the small deletion activate AS transcription leading to methylation of the NESP DMR with consequent inhibition of NESP transcription, and thereby provide a potential mechanism for PHP1B.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.185874\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.185874","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Recurrent Small Variants in NESP55/NESPAS Associated with Broad GNAS Methylation Defects and Pseudohypoparathyroidism Type 1b.
Pseudohypoparathyroidism type 1B (PHP1B) is associated with epigenetic changes on the maternal allele of the imprinted GNAS gene that inhibit expression of the alpha subunit of Gs (Gsα), thereby leading to parathyroid hormone resistance in renal proximal tubule cells where expression of Gs from the paternal GNAS allele is normally silent. Although all patients with PHP1B show loss of methylation for the exon A/B differentially methylated region (DMR), some patients with autosomal dominant PHP1B (AD-PHP1B) and most patients with sporadic PHP1B have additional methylation defects that affect the DMRs corresponding to exons XL, AS1, and NESP. Because the genetic defect is unknown in most of these patients, we sought to identify the underlying genetic basis for AD-PHP1B in two multigenerational families with broad GNAS methylation defects and negative clinical exomes. Genome sequencing identified small GNAS variants in each family that were also present in unrelated PHP1B subjects in a replication cohort. Maternal transmission of one GNAS microdeletion showed reduced penetrance in some unaffected patients. Expression of AS transcripts was increased, and NESP was decreased, in cells from affected patients. These results suggest that the small deletion activate AS transcription leading to methylation of the NESP DMR with consequent inhibition of NESP transcription, and thereby provide a potential mechanism for PHP1B.
期刊介绍:
JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.