通过植入的深度电极对人类癫痫脑部活动进行高分辨率多模态分析。

IF 6.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Anuj Kumar Dwivedi, Arun Mahesh, Albert Sanfeliu, Julian Larkin, Rebecca A Siwicki, Kieron J Sweeney, Donncha F O'Brien, Peter Widdess-Walsh, Simone Picelli, David C Henshall, Vijay K Tiwari
{"title":"通过植入的深度电极对人类癫痫脑部活动进行高分辨率多模态分析。","authors":"Anuj Kumar Dwivedi, Arun Mahesh, Albert Sanfeliu, Julian Larkin, Rebecca A Siwicki, Kieron J Sweeney, Donncha F O'Brien, Peter Widdess-Walsh, Simone Picelli, David C Henshall, Vijay K Tiwari","doi":"10.1172/jci.insight.184518","DOIUrl":null,"url":null,"abstract":"<p><p>The availability and integration of electrophysiological and molecular data from the living brain is critical to understand and diagnose complex human disease. Intracranial stereo electroencephalography (SEEG) electrodes used for identifying the seizure focus on epilepsy patients could enable the integration of such multimodal data. Here, we report MoPEDE (Multimodal Profiling of Epileptic Brain Activity via Explanted Depth Electrodes), a method that recovers extensive protein-coding transcripts, including cell-type markers, DNA methylation and short variant profiles from explanted SEEG electrodes matched with electrophysiological and radiological data allowing for high-resolution reconstructions of brain structure and function. We find gene expression gradients that correspond with the neurophysiology-assigned epileptogenicity index but also outlier molecular fingerprints in some electrodes, potentially indicating seizure generation or propagation zones not detected during electroclinical assessments. Additionally, we identify DNA methylation profiles indicative of transcriptionally permissive or restrictive chromatin states and SEEG-adherent differentially expressed and methylated genes not previously associated with epilepsy. Together, these findings validate that RNA profiles and genome-wide epigenetic data from explanted SEEG electrodes offer high-resolution surrogate molecular landscapes of brain activity. The MoPEDE approach has the potential to enhance diagnostic decisions and deepen our understanding of epileptogenic network processes in the human brain.</p>","PeriodicalId":14722,"journal":{"name":"JCI insight","volume":" ","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-resolution multimodal profiling of human epileptic brain activity via explanted depth electrodes.\",\"authors\":\"Anuj Kumar Dwivedi, Arun Mahesh, Albert Sanfeliu, Julian Larkin, Rebecca A Siwicki, Kieron J Sweeney, Donncha F O'Brien, Peter Widdess-Walsh, Simone Picelli, David C Henshall, Vijay K Tiwari\",\"doi\":\"10.1172/jci.insight.184518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The availability and integration of electrophysiological and molecular data from the living brain is critical to understand and diagnose complex human disease. Intracranial stereo electroencephalography (SEEG) electrodes used for identifying the seizure focus on epilepsy patients could enable the integration of such multimodal data. Here, we report MoPEDE (Multimodal Profiling of Epileptic Brain Activity via Explanted Depth Electrodes), a method that recovers extensive protein-coding transcripts, including cell-type markers, DNA methylation and short variant profiles from explanted SEEG electrodes matched with electrophysiological and radiological data allowing for high-resolution reconstructions of brain structure and function. We find gene expression gradients that correspond with the neurophysiology-assigned epileptogenicity index but also outlier molecular fingerprints in some electrodes, potentially indicating seizure generation or propagation zones not detected during electroclinical assessments. Additionally, we identify DNA methylation profiles indicative of transcriptionally permissive or restrictive chromatin states and SEEG-adherent differentially expressed and methylated genes not previously associated with epilepsy. Together, these findings validate that RNA profiles and genome-wide epigenetic data from explanted SEEG electrodes offer high-resolution surrogate molecular landscapes of brain activity. The MoPEDE approach has the potential to enhance diagnostic decisions and deepen our understanding of epileptogenic network processes in the human brain.</p>\",\"PeriodicalId\":14722,\"journal\":{\"name\":\"JCI insight\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCI insight\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1172/jci.insight.184518\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCI insight","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/jci.insight.184518","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

提供并整合来自活体大脑的电生理和分子数据,对于了解和诊断复杂的人类疾病至关重要。用于识别癫痫患者发作病灶的颅内立体脑电图(SEEG)电极可以实现此类多模态数据的整合。在这里,我们报告了 MoPEDE(通过外置深度电极进行癫痫脑活动多模态分析),这种方法能从外置 SEEG 电极中恢复大量蛋白质编码转录本,包括细胞类型标记、DNA 甲基化和短变体特征,并与电生理学和放射学数据相匹配,从而实现大脑结构和功能的高分辨率重建。我们发现了与神经生理学指定的致痫指数相对应的基因表达梯度,但也发现了一些电极中的离群分子指纹,这可能表明了电临床评估中未检测到的癫痫发生或传播区域。此外,我们还确定了表明转录允许或限制性染色质状态的 DNA 甲基化图谱,以及 SEEG 附着的不同表达和甲基化基因,这些基因以前与癫痫并无关联。这些发现共同验证了从外置 SEEG 电极获得的 RNA 图谱和全基因组表观遗传学数据可提供高分辨率的大脑活动替代分子图谱。MoPEDE方法有可能增强诊断决策,加深我们对人脑致痫网络过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-resolution multimodal profiling of human epileptic brain activity via explanted depth electrodes.

The availability and integration of electrophysiological and molecular data from the living brain is critical to understand and diagnose complex human disease. Intracranial stereo electroencephalography (SEEG) electrodes used for identifying the seizure focus on epilepsy patients could enable the integration of such multimodal data. Here, we report MoPEDE (Multimodal Profiling of Epileptic Brain Activity via Explanted Depth Electrodes), a method that recovers extensive protein-coding transcripts, including cell-type markers, DNA methylation and short variant profiles from explanted SEEG electrodes matched with electrophysiological and radiological data allowing for high-resolution reconstructions of brain structure and function. We find gene expression gradients that correspond with the neurophysiology-assigned epileptogenicity index but also outlier molecular fingerprints in some electrodes, potentially indicating seizure generation or propagation zones not detected during electroclinical assessments. Additionally, we identify DNA methylation profiles indicative of transcriptionally permissive or restrictive chromatin states and SEEG-adherent differentially expressed and methylated genes not previously associated with epilepsy. Together, these findings validate that RNA profiles and genome-wide epigenetic data from explanted SEEG electrodes offer high-resolution surrogate molecular landscapes of brain activity. The MoPEDE approach has the potential to enhance diagnostic decisions and deepen our understanding of epileptogenic network processes in the human brain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCI insight
JCI insight Medicine-General Medicine
CiteScore
13.70
自引率
1.20%
发文量
543
审稿时长
6 weeks
期刊介绍: JCI Insight is a Gold Open Access journal with a 2022 Impact Factor of 8.0. It publishes high-quality studies in various biomedical specialties, such as autoimmunity, gastroenterology, immunology, metabolism, nephrology, neuroscience, oncology, pulmonology, and vascular biology. The journal focuses on clinically relevant basic and translational research that contributes to the understanding of disease biology and treatment. JCI Insight is self-published by the American Society for Clinical Investigation (ASCI), a nonprofit honor organization of physician-scientists founded in 1908, and it helps fulfill the ASCI's mission to advance medical science through the publication of clinically relevant research reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信