胆固醇消耗通过 SREBP-2 信号传导激活肝星状细胞

IF 4.5 2区 生物学 Q2 CELL BIOLOGY
Nivya Vijayan, Madan Kumar Perumal
{"title":"胆固醇消耗通过 SREBP-2 信号传导激活肝星状细胞","authors":"Nivya Vijayan, Madan Kumar Perumal","doi":"10.1002/jcp.31476","DOIUrl":null,"url":null,"abstract":"<p><p>Liver fibrosis is one of the leading cause of death worldwide. In liver, hepatic stellate cells are the primary cell type that gets activated during fibrosis. LX-2 cells are human-derived hepatic stellate cell lines typically employed for studying liver fibrosis mechanisms and screening anti-fibrotic lead molecules. Although LX-2 cells are partially activated in culture conditions, numerous stimuli including TGF-β, H<sub>2</sub>O<sub>2</sub>, hypoxia, LPS were reported to activate LX-2 cells. In this study, for the first time, the effect of cholesterol depletion on LX-2 cells was studied. Under cholesterol-depleted conditions, the mRNA and protein expression of HSC activation markers (α-SMA, GFAP) were significantly increased. Also, the expression of SREBP-2, HMGCR were significantly upregulated in response to cholesterol depletion. Treatment with fatostatin, a reported SREBP inhibitor abolished nuclear SREBP-1 and SREBP-2 expression and regulated the SREBP signaling. Transmission electron microscopic imaging showed distinct ultrastructural changes in response to cholesterol depletion. Furthermore, cholesterol depletion did not affect the cell-cycle profile of LX-2 cells compared with untreated while fatostatin treatment induced G2 cell-cycle arrest. Overall, cholesterol depletion activated LX-2 cells mediated by SREBP-2 signaling and therefore could be further employed as stimuli for LX-2 activation and screening lead molecules targeting SREBPs.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cholesterol Depletion Activate Hepatic Stellate Cells Mediated Through SREBP-2 Signaling.\",\"authors\":\"Nivya Vijayan, Madan Kumar Perumal\",\"doi\":\"10.1002/jcp.31476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liver fibrosis is one of the leading cause of death worldwide. In liver, hepatic stellate cells are the primary cell type that gets activated during fibrosis. LX-2 cells are human-derived hepatic stellate cell lines typically employed for studying liver fibrosis mechanisms and screening anti-fibrotic lead molecules. Although LX-2 cells are partially activated in culture conditions, numerous stimuli including TGF-β, H<sub>2</sub>O<sub>2</sub>, hypoxia, LPS were reported to activate LX-2 cells. In this study, for the first time, the effect of cholesterol depletion on LX-2 cells was studied. Under cholesterol-depleted conditions, the mRNA and protein expression of HSC activation markers (α-SMA, GFAP) were significantly increased. Also, the expression of SREBP-2, HMGCR were significantly upregulated in response to cholesterol depletion. Treatment with fatostatin, a reported SREBP inhibitor abolished nuclear SREBP-1 and SREBP-2 expression and regulated the SREBP signaling. Transmission electron microscopic imaging showed distinct ultrastructural changes in response to cholesterol depletion. Furthermore, cholesterol depletion did not affect the cell-cycle profile of LX-2 cells compared with untreated while fatostatin treatment induced G2 cell-cycle arrest. Overall, cholesterol depletion activated LX-2 cells mediated by SREBP-2 signaling and therefore could be further employed as stimuli for LX-2 activation and screening lead molecules targeting SREBPs.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jcp.31476\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31476","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝纤维化是导致全球死亡的主要原因之一。在肝脏中,肝星状细胞是纤维化过程中被激活的主要细胞类型。LX-2 细胞是源自人类的肝星状细胞系,通常用于研究肝纤维化机制和筛选抗纤维化先导分子。尽管LX-2细胞在培养条件下被部分激活,但有报道称包括TGF-β、H2O2、缺氧、LPS在内的多种刺激可激活LX-2细胞。本研究首次研究了胆固醇耗竭对 LX-2 细胞的影响。在胆固醇缺失条件下,造血干细胞活化标志物(α-SMA、GFAP)的mRNA和蛋白表达均显著增加。此外,SREBP-2和HMGCR的表达也随着胆固醇的消耗而明显上调。据报道,SREBP抑制剂fatostatin可抑制核SREBP-1和SREBP-2的表达,并调节SREBP信号转导。透射电子显微镜成像显示,胆固醇消耗会引起明显的超微结构变化。此外,与未处理的LX-2细胞相比,胆固醇耗竭并不影响其细胞周期轮廓,而肥胖素处理则会诱导G2细胞周期停滞。总之,胆固醇耗竭可通过SREBP-2信号传导激活LX-2细胞,因此可进一步用于刺激LX-2激活和筛选靶向SREBPs的先导分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cholesterol Depletion Activate Hepatic Stellate Cells Mediated Through SREBP-2 Signaling.

Liver fibrosis is one of the leading cause of death worldwide. In liver, hepatic stellate cells are the primary cell type that gets activated during fibrosis. LX-2 cells are human-derived hepatic stellate cell lines typically employed for studying liver fibrosis mechanisms and screening anti-fibrotic lead molecules. Although LX-2 cells are partially activated in culture conditions, numerous stimuli including TGF-β, H2O2, hypoxia, LPS were reported to activate LX-2 cells. In this study, for the first time, the effect of cholesterol depletion on LX-2 cells was studied. Under cholesterol-depleted conditions, the mRNA and protein expression of HSC activation markers (α-SMA, GFAP) were significantly increased. Also, the expression of SREBP-2, HMGCR were significantly upregulated in response to cholesterol depletion. Treatment with fatostatin, a reported SREBP inhibitor abolished nuclear SREBP-1 and SREBP-2 expression and regulated the SREBP signaling. Transmission electron microscopic imaging showed distinct ultrastructural changes in response to cholesterol depletion. Furthermore, cholesterol depletion did not affect the cell-cycle profile of LX-2 cells compared with untreated while fatostatin treatment induced G2 cell-cycle arrest. Overall, cholesterol depletion activated LX-2 cells mediated by SREBP-2 signaling and therefore could be further employed as stimuli for LX-2 activation and screening lead molecules targeting SREBPs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信