{"title":"葡萄糖通过磷酸化 AKT 和 AMPK 上调 ChREBP,从而调节 MALT1 和 WISP1 的表达。","authors":"Syue-Ting Chen, Kang-Shuo Chang, Yu-Hsiang Lin, Chen-Pang Hou, Wei-Yin Lin, Shu-Yuan Hsu, Hsin-Ching Sung, Tsui-Hsia Feng, Ke-Hung Tsui, Horng-Heng Juang","doi":"10.1002/jcp.31478","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose can activate the carbohydrate response element binding protein (ChREBP) transcription factor to control gene expressions in the metabolic pathways. The way of ChREBP involvement in human prostate cancer development remains undetermined. This study examined the interactions between prostate fibroblasts and cancer cells under the influences of ChREBP. Results showed that high glucose (30 mM) increased the phosphorylation of AKT at S473 and AMP-activated protein kinase (AMPK) at S485 in human prostate fibroblast (HPrF) cells and prostate cancer PC-3 cells. High glucose enhanced the expression of ChREBP, which increased the expressions of fibronectin, alpha-smooth muscle actin (α-SMA), and WNT1 inducible signaling pathway protein 1 (WISP1), magnifying the cell growth and contraction in HPrF cells in vitro. The cell proliferation, invasion, and tumor growth in prostate cancer PC-3 cells were enhanced by inducing the expressions of ChREBP, mucosa-associated lymphoid tissue 1 (MALT1), and epithelial-mesenchymal transition markers with high glucose treatment. Moreover, ectopic ChREBP overexpression induced NF-κB signaling activities via upregulating MALT1 expression in PC-3 cells. Our findings illustrated that ChREBP is an oncogene in the human prostate. High glucose condition induces a glucose/ChREBP/MALT1/NF-κB axis which links the glucose metabolism to the NF-κB activation in prostate cancer cells, and a glucose/ChREBP/WISP1 axis mediating autocrine and paracrine signaling between fibroblasts and cancer cells to promote cell migration, contraction, growth, and invasion of the human prostate.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glucose Upregulates ChREBP via Phosphorylation of AKT and AMPK to Modulate MALT1 and WISP1 Expression.\",\"authors\":\"Syue-Ting Chen, Kang-Shuo Chang, Yu-Hsiang Lin, Chen-Pang Hou, Wei-Yin Lin, Shu-Yuan Hsu, Hsin-Ching Sung, Tsui-Hsia Feng, Ke-Hung Tsui, Horng-Heng Juang\",\"doi\":\"10.1002/jcp.31478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucose can activate the carbohydrate response element binding protein (ChREBP) transcription factor to control gene expressions in the metabolic pathways. The way of ChREBP involvement in human prostate cancer development remains undetermined. This study examined the interactions between prostate fibroblasts and cancer cells under the influences of ChREBP. Results showed that high glucose (30 mM) increased the phosphorylation of AKT at S473 and AMP-activated protein kinase (AMPK) at S485 in human prostate fibroblast (HPrF) cells and prostate cancer PC-3 cells. High glucose enhanced the expression of ChREBP, which increased the expressions of fibronectin, alpha-smooth muscle actin (α-SMA), and WNT1 inducible signaling pathway protein 1 (WISP1), magnifying the cell growth and contraction in HPrF cells in vitro. The cell proliferation, invasion, and tumor growth in prostate cancer PC-3 cells were enhanced by inducing the expressions of ChREBP, mucosa-associated lymphoid tissue 1 (MALT1), and epithelial-mesenchymal transition markers with high glucose treatment. Moreover, ectopic ChREBP overexpression induced NF-κB signaling activities via upregulating MALT1 expression in PC-3 cells. Our findings illustrated that ChREBP is an oncogene in the human prostate. High glucose condition induces a glucose/ChREBP/MALT1/NF-κB axis which links the glucose metabolism to the NF-κB activation in prostate cancer cells, and a glucose/ChREBP/WISP1 axis mediating autocrine and paracrine signaling between fibroblasts and cancer cells to promote cell migration, contraction, growth, and invasion of the human prostate.</p>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/jcp.31478\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31478","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Glucose Upregulates ChREBP via Phosphorylation of AKT and AMPK to Modulate MALT1 and WISP1 Expression.
Glucose can activate the carbohydrate response element binding protein (ChREBP) transcription factor to control gene expressions in the metabolic pathways. The way of ChREBP involvement in human prostate cancer development remains undetermined. This study examined the interactions between prostate fibroblasts and cancer cells under the influences of ChREBP. Results showed that high glucose (30 mM) increased the phosphorylation of AKT at S473 and AMP-activated protein kinase (AMPK) at S485 in human prostate fibroblast (HPrF) cells and prostate cancer PC-3 cells. High glucose enhanced the expression of ChREBP, which increased the expressions of fibronectin, alpha-smooth muscle actin (α-SMA), and WNT1 inducible signaling pathway protein 1 (WISP1), magnifying the cell growth and contraction in HPrF cells in vitro. The cell proliferation, invasion, and tumor growth in prostate cancer PC-3 cells were enhanced by inducing the expressions of ChREBP, mucosa-associated lymphoid tissue 1 (MALT1), and epithelial-mesenchymal transition markers with high glucose treatment. Moreover, ectopic ChREBP overexpression induced NF-κB signaling activities via upregulating MALT1 expression in PC-3 cells. Our findings illustrated that ChREBP is an oncogene in the human prostate. High glucose condition induces a glucose/ChREBP/MALT1/NF-κB axis which links the glucose metabolism to the NF-κB activation in prostate cancer cells, and a glucose/ChREBP/WISP1 axis mediating autocrine and paracrine signaling between fibroblasts and cancer cells to promote cell migration, contraction, growth, and invasion of the human prostate.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.