人和动物肠道中的新型 A1408 16S rRNA 甲基转移酶 NpmC。

IF 4.9 2区 医学 Q1 INFECTIOUS DISEASES
Bosco R Matamoros, Carlos Serna, Emilia Wedel, Natalia Montero, Finn Kirpekar, Bruno Gonzalez-Zorn
{"title":"人和动物肠道中的新型 A1408 16S rRNA 甲基转移酶 NpmC。","authors":"Bosco R Matamoros, Carlos Serna, Emilia Wedel, Natalia Montero, Finn Kirpekar, Bruno Gonzalez-Zorn","doi":"10.1016/j.ijantimicag.2024.107382","DOIUrl":null,"url":null,"abstract":"<p><p>NpmA and NpmB are 16S rRNA methyltransferases that act on residue A1408 and confer high-level resistance to almost all aminoglycosides; however, these methyltransferases are rarely reported. A novel gene, npmC, was identified after analysisng all world-wide available metagenomic projects in a One Health context. This gene has a high level of similarity (91.5%) with npmA and up to 92.7% similarity at amino acidic level. The protein encoded by this gene presents the conserved motifs required for A1408 methylation. npmC was synthesized and its expression in Escherichia coli resulted in a high level of resistance to 4,5-disubstituted 2-deoxystreptamine (2-DOS) and 4-monosubstituted 2-DOS aminoglycosides, as well as moderate resistance to 4,6-disusbstituted 2-DOS aminoglycosides, including the last resort aminoglycoside, plazomicin. Methylation at residue A1408 was confirmed by mass spectrometry assays. Analysis of the npmC gene background revealed that its genetic context was associated with different insertion sequences that could mobilise the gene. Similarities in the genetic context between npmC and npmA indicate that they share a common ancestor. The immediate genetic context of this methyltransferase indicates a high relationship to the Eubacteriales order. This finding reveals the dark matter of the microbiome as a potential source of novel resistance genes, expands the list of the true pan-aminoglycoside 16S rRNA methyltransferases, which threaten the usefulness and development of next-generation aminoglycosides.</p>","PeriodicalId":13818,"journal":{"name":"International Journal of Antimicrobial Agents","volume":" ","pages":"107382"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NpmC - a novel A1408 16S rRNA methyltransferase in the gut of humans and animals.\",\"authors\":\"Bosco R Matamoros, Carlos Serna, Emilia Wedel, Natalia Montero, Finn Kirpekar, Bruno Gonzalez-Zorn\",\"doi\":\"10.1016/j.ijantimicag.2024.107382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NpmA and NpmB are 16S rRNA methyltransferases that act on residue A1408 and confer high-level resistance to almost all aminoglycosides; however, these methyltransferases are rarely reported. A novel gene, npmC, was identified after analysisng all world-wide available metagenomic projects in a One Health context. This gene has a high level of similarity (91.5%) with npmA and up to 92.7% similarity at amino acidic level. The protein encoded by this gene presents the conserved motifs required for A1408 methylation. npmC was synthesized and its expression in Escherichia coli resulted in a high level of resistance to 4,5-disubstituted 2-deoxystreptamine (2-DOS) and 4-monosubstituted 2-DOS aminoglycosides, as well as moderate resistance to 4,6-disusbstituted 2-DOS aminoglycosides, including the last resort aminoglycoside, plazomicin. Methylation at residue A1408 was confirmed by mass spectrometry assays. Analysis of the npmC gene background revealed that its genetic context was associated with different insertion sequences that could mobilise the gene. Similarities in the genetic context between npmC and npmA indicate that they share a common ancestor. The immediate genetic context of this methyltransferase indicates a high relationship to the Eubacteriales order. This finding reveals the dark matter of the microbiome as a potential source of novel resistance genes, expands the list of the true pan-aminoglycoside 16S rRNA methyltransferases, which threaten the usefulness and development of next-generation aminoglycosides.</p>\",\"PeriodicalId\":13818,\"journal\":{\"name\":\"International Journal of Antimicrobial Agents\",\"volume\":\" \",\"pages\":\"107382\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Antimicrobial Agents\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijantimicag.2024.107382\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antimicrobial Agents","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijantimicag.2024.107382","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

作用于残基 A1408 的 16S rRNA 甲基转移酶(NpmA 和 NpmB)对几乎所有氨基糖苷类药物都具有高水平的耐药性,但有关它们的报道却很少。通过分析 "一个健康 "背景下的元基因组项目,我们在中国和加拿大的人类和动物肠道微生物组中发现了一个新基因 npmC,它与 npmA 的同一性为 91.5%,在氨基酸水平上的同一性高达 92.7%。该基因编码的蛋白质具有 A1408 甲基化所需的保守基序。该基因的表达导致了对 4,5-二取代的 2-脱氧链霉胺(2-DOS)和 4-单取代的 2-DOS 氨基糖苷类的高度耐药性,以及对 4,6-二取代的 2-DOS 氨基糖苷类(包括最后的氨基糖苷类 plazomicin)的中度耐药性。质谱分析进一步证实了残基 A1408 的甲基化。对 npmC 基因背景的分析表明,该基因的遗传背景与不同的插入序列有关,这些插入序列可能会调动该基因。npmC 和 npmA 基因背景的相似性表明,它们有一个共同的祖先。这种甲基转移酶的直接遗传背景表明,它们与 Eubacteriales 目关系密切。这一发现扩大了真正的泛氨基糖苷类 16S rRNA 甲基转移酶的名单,威胁到下一代氨基糖苷类药物的实用性和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NpmC - a novel A1408 16S rRNA methyltransferase in the gut of humans and animals.

NpmA and NpmB are 16S rRNA methyltransferases that act on residue A1408 and confer high-level resistance to almost all aminoglycosides; however, these methyltransferases are rarely reported. A novel gene, npmC, was identified after analysisng all world-wide available metagenomic projects in a One Health context. This gene has a high level of similarity (91.5%) with npmA and up to 92.7% similarity at amino acidic level. The protein encoded by this gene presents the conserved motifs required for A1408 methylation. npmC was synthesized and its expression in Escherichia coli resulted in a high level of resistance to 4,5-disubstituted 2-deoxystreptamine (2-DOS) and 4-monosubstituted 2-DOS aminoglycosides, as well as moderate resistance to 4,6-disusbstituted 2-DOS aminoglycosides, including the last resort aminoglycoside, plazomicin. Methylation at residue A1408 was confirmed by mass spectrometry assays. Analysis of the npmC gene background revealed that its genetic context was associated with different insertion sequences that could mobilise the gene. Similarities in the genetic context between npmC and npmA indicate that they share a common ancestor. The immediate genetic context of this methyltransferase indicates a high relationship to the Eubacteriales order. This finding reveals the dark matter of the microbiome as a potential source of novel resistance genes, expands the list of the true pan-aminoglycoside 16S rRNA methyltransferases, which threaten the usefulness and development of next-generation aminoglycosides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
21.60
自引率
0.90%
发文量
176
审稿时长
36 days
期刊介绍: The International Journal of Antimicrobial Agents is a peer-reviewed publication offering comprehensive and current reference information on the physical, pharmacological, in vitro, and clinical properties of individual antimicrobial agents, covering antiviral, antiparasitic, antibacterial, and antifungal agents. The journal not only communicates new trends and developments through authoritative review articles but also addresses the critical issue of antimicrobial resistance, both in hospital and community settings. Published content includes solicited reviews by leading experts and high-quality original research papers in the specified fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信