{"title":"基于多阶段多模态药物表征学习的药物敏感性预测","authors":"Jinmiao Song, Mingjie Wei, Shuang Zhao, Hui Zhai, Qiguo Dai, Xiaodong Duan","doi":"10.1007/s12539-024-00668-1","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drug Sensitivity Prediction Based on Multi-stage Multi-modal Drug Representation Learning.\",\"authors\":\"Jinmiao Song, Mingjie Wei, Shuang Zhao, Hui Zhai, Qiguo Dai, Xiaodong Duan\",\"doi\":\"10.1007/s12539-024-00668-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00668-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00668-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Drug Sensitivity Prediction Based on Multi-stage Multi-modal Drug Representation Learning.
Accurate prediction of anticancer drug responses is essential for developing personalized treatment plans in order to improve cancer patient survival rates and reduce healthcare costs. To this end, we propose a drug sensitivity prediction model based on multi-stage multi-modal drug representations (ModDRDSP) to reflect the properties of drugs more comprehensively, and to better model the complex interactions between cells and drugs. Specifically, we adopt the SMILES representation learning method based on the deep hierarchical bi-directional GRU network (DSBiGRU) and the molecular graph representation learning method based on the deep message-crossing network (DMCN) for the multi-modal information of drugs. Additionally, we integrate the multi-omics information of cell lines based on a convolutional neural network (CNN). Finally, we use an ensemble deep forest algorithm for the prediction of drug sensitivity. After validation, the ModDRDSP shows impressive performance which outperforms the four current industry-leading models. More importantly, ablation experiments demonstrate the validity of each module of the proposed model, and case studies show the good results of ModDRDSP for predicting drug sensitivity, further establishing the superiority of ModDRDSP in terms of performance.
期刊介绍:
Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology.
The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer.
The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.