Iara Ferreira Resende , Pâmela Mynsen Machado Martins , Dirceu de Souza Melo , Marciane Magnani , Disney Ribeiro Dias , Rosane Freitas Schwan
{"title":"具有益生菌特性的微胶囊 Pichia kluyveri CCMA 0615 的开发和表征及其在发酵饮料中的应用。","authors":"Iara Ferreira Resende , Pâmela Mynsen Machado Martins , Dirceu de Souza Melo , Marciane Magnani , Disney Ribeiro Dias , Rosane Freitas Schwan","doi":"10.1016/j.ijfoodmicro.2024.110967","DOIUrl":null,"url":null,"abstract":"<div><div>The study aimed to develop innovative microencapsulated formulations of strains with probiotic attributes, <em>Pichia kluyveri</em> CCMA 0615 and <em>Saccharomyces cerevisiae</em> CCMA 0732. The yeasts (8 log CFU/mL) were microencapsulated by spray drying technique using whey powder (WP - 15 %, 20 %, and 30 %) and sodium alginate (ALG - 1 %). The microcapsules and cell viability were characterized during two months of storage (4 °C and 25 °C). The selected formulations were applied to functional beverage fermentation, and viability and survival in the simulated gastrointestinal tract (GIT) were performed. The viability of yeasts microencapsulated by the spray drying method was shown to be dependent on the strain and encapsulating matrix used, ranging from 84 to 99 %. <em>P. kluyveri</em> required refrigeration when storing microcapsules. In functional beverage fermentation, microencapsulated yeast maintained the same fermentative profile with carbohydrate consumption, production of lactic acid (0.30 to 1.10 g/L) and alcohol (0.2 to 1.61 g/L), and greater viability during storage. Finally, the microencapsulation of <em>P. kluyveri</em> with 15 % WP + 1 % ALG maintained high viability under GIT conditions, whether exposed independently (>84 %) or incorporated into a food matrix (>94 %). The study demonstrated that this innovative microencapsulation of probiotic yeasts increases their viability, improves biotechnological application, and facilitates efficient delivery of probiotics to the host.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"427 ","pages":"Article 110967"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of microencapsulated Pichia kluyveri CCMA 0615 with probiotic properties and its application in fermented beverages\",\"authors\":\"Iara Ferreira Resende , Pâmela Mynsen Machado Martins , Dirceu de Souza Melo , Marciane Magnani , Disney Ribeiro Dias , Rosane Freitas Schwan\",\"doi\":\"10.1016/j.ijfoodmicro.2024.110967\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The study aimed to develop innovative microencapsulated formulations of strains with probiotic attributes, <em>Pichia kluyveri</em> CCMA 0615 and <em>Saccharomyces cerevisiae</em> CCMA 0732. The yeasts (8 log CFU/mL) were microencapsulated by spray drying technique using whey powder (WP - 15 %, 20 %, and 30 %) and sodium alginate (ALG - 1 %). The microcapsules and cell viability were characterized during two months of storage (4 °C and 25 °C). The selected formulations were applied to functional beverage fermentation, and viability and survival in the simulated gastrointestinal tract (GIT) were performed. The viability of yeasts microencapsulated by the spray drying method was shown to be dependent on the strain and encapsulating matrix used, ranging from 84 to 99 %. <em>P. kluyveri</em> required refrigeration when storing microcapsules. In functional beverage fermentation, microencapsulated yeast maintained the same fermentative profile with carbohydrate consumption, production of lactic acid (0.30 to 1.10 g/L) and alcohol (0.2 to 1.61 g/L), and greater viability during storage. Finally, the microencapsulation of <em>P. kluyveri</em> with 15 % WP + 1 % ALG maintained high viability under GIT conditions, whether exposed independently (>84 %) or incorporated into a food matrix (>94 %). The study demonstrated that this innovative microencapsulation of probiotic yeasts increases their viability, improves biotechnological application, and facilitates efficient delivery of probiotics to the host.</div></div>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"427 \",\"pages\":\"Article 110967\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168160524004112\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160524004112","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development and characterization of microencapsulated Pichia kluyveri CCMA 0615 with probiotic properties and its application in fermented beverages
The study aimed to develop innovative microencapsulated formulations of strains with probiotic attributes, Pichia kluyveri CCMA 0615 and Saccharomyces cerevisiae CCMA 0732. The yeasts (8 log CFU/mL) were microencapsulated by spray drying technique using whey powder (WP - 15 %, 20 %, and 30 %) and sodium alginate (ALG - 1 %). The microcapsules and cell viability were characterized during two months of storage (4 °C and 25 °C). The selected formulations were applied to functional beverage fermentation, and viability and survival in the simulated gastrointestinal tract (GIT) were performed. The viability of yeasts microencapsulated by the spray drying method was shown to be dependent on the strain and encapsulating matrix used, ranging from 84 to 99 %. P. kluyveri required refrigeration when storing microcapsules. In functional beverage fermentation, microencapsulated yeast maintained the same fermentative profile with carbohydrate consumption, production of lactic acid (0.30 to 1.10 g/L) and alcohol (0.2 to 1.61 g/L), and greater viability during storage. Finally, the microencapsulation of P. kluyveri with 15 % WP + 1 % ALG maintained high viability under GIT conditions, whether exposed independently (>84 %) or incorporated into a food matrix (>94 %). The study demonstrated that this innovative microencapsulation of probiotic yeasts increases their viability, improves biotechnological application, and facilitates efficient delivery of probiotics to the host.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.