Weixiong He, Urmo Võsa, Teele Palumaa, Jue-Sheng Ong, Santiago Diaz Torres, Alex W Hewitt, David A Mackey, Puya Gharahkhani, Tõnu Esko, Stuart MacGregor
{"title":"开发并验证综合多基因风险评分,加强角膜病风险预测。","authors":"Weixiong He, Urmo Võsa, Teele Palumaa, Jue-Sheng Ong, Santiago Diaz Torres, Alex W Hewitt, David A Mackey, Puya Gharahkhani, Tõnu Esko, Stuart MacGregor","doi":"10.1093/hmg/ddae157","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to develop and validate a comprehensive polygenic risk score (PRS) for keratoconus, enhancing the predictive accuracy for identifying individuals at increased risk, which is crucial for preventing keratoconus-associated visual impairment such as post-Laser-assisted in situ keratomileusis (LASIK) ectasia.</p><p><strong>Methods: </strong>We applied a multi-trait analysis approach (MTAG) to genome-wide association study data on keratoconus and quantitative keratoconus-related traits and used this to construct PRS models for keratoconus risk using several PRS methodologies. We evaluated the predictive performance of the PRSs in two biobanks: Estonian Biobank (EstBB; 375 keratoconus cases and 17 902 controls) and UK Biobank (UKB: 34 keratoconus cases and 1000 controls). Scores were compared using the area under the curve (AUC) and odds ratios (ORs) for various PRS models.</p><p><strong>Results: </strong>The PRS models demonstrated significant predictive capabilities in EstBB, with the SBayesRC model achieving the highest OR of 2.28 per standard deviation increase in PRS, with a model containing age, sex and PRS showing good predictive accuracy (AUC = 0.72). In UKB, we found that adding the best-performing PRS to a model containing corneal measurements increased the AUC from 0.84 to 0.88 (P = 0.012 for difference), with an OR of 4.26 per standard deviation increase in the PRS. These models showed improved predictive capability compared to previous keratoconus PRS.</p><p><strong>Conclusion: </strong>The PRS models enhanced prediction of keratoconus risk, even with corneal measurements, showing potential for clinical use to identify individuals at high risk of keratoconus, and potentially help reduce the risk of post-LASIK ectasia.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing and validating a comprehensive polygenic risk score to enhance keratoconus risk prediction.\",\"authors\":\"Weixiong He, Urmo Võsa, Teele Palumaa, Jue-Sheng Ong, Santiago Diaz Torres, Alex W Hewitt, David A Mackey, Puya Gharahkhani, Tõnu Esko, Stuart MacGregor\",\"doi\":\"10.1093/hmg/ddae157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>This study aimed to develop and validate a comprehensive polygenic risk score (PRS) for keratoconus, enhancing the predictive accuracy for identifying individuals at increased risk, which is crucial for preventing keratoconus-associated visual impairment such as post-Laser-assisted in situ keratomileusis (LASIK) ectasia.</p><p><strong>Methods: </strong>We applied a multi-trait analysis approach (MTAG) to genome-wide association study data on keratoconus and quantitative keratoconus-related traits and used this to construct PRS models for keratoconus risk using several PRS methodologies. We evaluated the predictive performance of the PRSs in two biobanks: Estonian Biobank (EstBB; 375 keratoconus cases and 17 902 controls) and UK Biobank (UKB: 34 keratoconus cases and 1000 controls). Scores were compared using the area under the curve (AUC) and odds ratios (ORs) for various PRS models.</p><p><strong>Results: </strong>The PRS models demonstrated significant predictive capabilities in EstBB, with the SBayesRC model achieving the highest OR of 2.28 per standard deviation increase in PRS, with a model containing age, sex and PRS showing good predictive accuracy (AUC = 0.72). In UKB, we found that adding the best-performing PRS to a model containing corneal measurements increased the AUC from 0.84 to 0.88 (P = 0.012 for difference), with an OR of 4.26 per standard deviation increase in the PRS. These models showed improved predictive capability compared to previous keratoconus PRS.</p><p><strong>Conclusion: </strong>The PRS models enhanced prediction of keratoconus risk, even with corneal measurements, showing potential for clinical use to identify individuals at high risk of keratoconus, and potentially help reduce the risk of post-LASIK ectasia.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddae157\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae157","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Developing and validating a comprehensive polygenic risk score to enhance keratoconus risk prediction.
Purpose: This study aimed to develop and validate a comprehensive polygenic risk score (PRS) for keratoconus, enhancing the predictive accuracy for identifying individuals at increased risk, which is crucial for preventing keratoconus-associated visual impairment such as post-Laser-assisted in situ keratomileusis (LASIK) ectasia.
Methods: We applied a multi-trait analysis approach (MTAG) to genome-wide association study data on keratoconus and quantitative keratoconus-related traits and used this to construct PRS models for keratoconus risk using several PRS methodologies. We evaluated the predictive performance of the PRSs in two biobanks: Estonian Biobank (EstBB; 375 keratoconus cases and 17 902 controls) and UK Biobank (UKB: 34 keratoconus cases and 1000 controls). Scores were compared using the area under the curve (AUC) and odds ratios (ORs) for various PRS models.
Results: The PRS models demonstrated significant predictive capabilities in EstBB, with the SBayesRC model achieving the highest OR of 2.28 per standard deviation increase in PRS, with a model containing age, sex and PRS showing good predictive accuracy (AUC = 0.72). In UKB, we found that adding the best-performing PRS to a model containing corneal measurements increased the AUC from 0.84 to 0.88 (P = 0.012 for difference), with an OR of 4.26 per standard deviation increase in the PRS. These models showed improved predictive capability compared to previous keratoconus PRS.
Conclusion: The PRS models enhanced prediction of keratoconus risk, even with corneal measurements, showing potential for clinical use to identify individuals at high risk of keratoconus, and potentially help reduce the risk of post-LASIK ectasia.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.