Fiona E Weaver, Elizabeth White, Allyson M Peek, Colin A Nurse, Richard C Austin, Suleiman A Igdoura
{"title":"4-苯基丁酸可减轻GM2神经节苷脂病小鼠模型脊髓中ER应激诱导的神经退行性变。","authors":"Fiona E Weaver, Elizabeth White, Allyson M Peek, Colin A Nurse, Richard C Austin, Suleiman A Igdoura","doi":"10.1093/hmg/ddae153","DOIUrl":null,"url":null,"abstract":"<p><p>Sandhoff disease (SD), a fatal and rare lysosomal storage disorder (LSD), is caused by a deficiency of the enzyme β-hexosaminidase B and leads to severe accumulation of GM2 gangliosides in lysosomes, primarily within the central nervous system (CNS). This accumulation results in severe neurological impairment, lower motor neuron disease, and death. Currently, there are no effective therapies available for SD. Here, we explored the role of endoplasmic reticulum (ER) stress in the spinal cord during disease progression in an established mouse model of SD and revealed the beneficial outcome of off-label treatment with the FDA-approved drug, 4-phenylbutyric acid (4-PBA). We analyzed the expression and localization of ER stress and cellular apoptosis markers, which revealed significant upregulation of these factors within motor neurons. Additionally, we observed a > 50% reduction in neuronal numbers throughout all spinal cord regions. Our studies also tested the impact of the chemical chaperone 4-PBA on ER stress in mice, and following administration, we observed significant improvements in motor neuromuscular function and life span throughout disease progression. 4-PBA treatment significantly reduced apoptosis in spinal cord neurons and increased the number of choline acetyltransferase (ChAT)-positive neurons, with little effect on astrogliosis or sensory interneurons. Overall, this study provides strong evidence for the role of chronic ER stress in the pathophysiology of SD and highlights 4-PBA as a promising therapeutic treatment for SD and potentially other related LSDs.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"32-46"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756275/pdf/","citationCount":"0","resultStr":"{\"title\":\"4-Phenylbutyric acid mitigates ER stress-induced neurodegeneration in the spinal cords of a GM2 gangliosidosis mouse model.\",\"authors\":\"Fiona E Weaver, Elizabeth White, Allyson M Peek, Colin A Nurse, Richard C Austin, Suleiman A Igdoura\",\"doi\":\"10.1093/hmg/ddae153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sandhoff disease (SD), a fatal and rare lysosomal storage disorder (LSD), is caused by a deficiency of the enzyme β-hexosaminidase B and leads to severe accumulation of GM2 gangliosides in lysosomes, primarily within the central nervous system (CNS). This accumulation results in severe neurological impairment, lower motor neuron disease, and death. Currently, there are no effective therapies available for SD. Here, we explored the role of endoplasmic reticulum (ER) stress in the spinal cord during disease progression in an established mouse model of SD and revealed the beneficial outcome of off-label treatment with the FDA-approved drug, 4-phenylbutyric acid (4-PBA). We analyzed the expression and localization of ER stress and cellular apoptosis markers, which revealed significant upregulation of these factors within motor neurons. Additionally, we observed a > 50% reduction in neuronal numbers throughout all spinal cord regions. Our studies also tested the impact of the chemical chaperone 4-PBA on ER stress in mice, and following administration, we observed significant improvements in motor neuromuscular function and life span throughout disease progression. 4-PBA treatment significantly reduced apoptosis in spinal cord neurons and increased the number of choline acetyltransferase (ChAT)-positive neurons, with little effect on astrogliosis or sensory interneurons. Overall, this study provides strong evidence for the role of chronic ER stress in the pathophysiology of SD and highlights 4-PBA as a promising therapeutic treatment for SD and potentially other related LSDs.</p>\",\"PeriodicalId\":13070,\"journal\":{\"name\":\"Human molecular genetics\",\"volume\":\" \",\"pages\":\"32-46\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756275/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human molecular genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/hmg/ddae153\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae153","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
4-Phenylbutyric acid mitigates ER stress-induced neurodegeneration in the spinal cords of a GM2 gangliosidosis mouse model.
Sandhoff disease (SD), a fatal and rare lysosomal storage disorder (LSD), is caused by a deficiency of the enzyme β-hexosaminidase B and leads to severe accumulation of GM2 gangliosides in lysosomes, primarily within the central nervous system (CNS). This accumulation results in severe neurological impairment, lower motor neuron disease, and death. Currently, there are no effective therapies available for SD. Here, we explored the role of endoplasmic reticulum (ER) stress in the spinal cord during disease progression in an established mouse model of SD and revealed the beneficial outcome of off-label treatment with the FDA-approved drug, 4-phenylbutyric acid (4-PBA). We analyzed the expression and localization of ER stress and cellular apoptosis markers, which revealed significant upregulation of these factors within motor neurons. Additionally, we observed a > 50% reduction in neuronal numbers throughout all spinal cord regions. Our studies also tested the impact of the chemical chaperone 4-PBA on ER stress in mice, and following administration, we observed significant improvements in motor neuromuscular function and life span throughout disease progression. 4-PBA treatment significantly reduced apoptosis in spinal cord neurons and increased the number of choline acetyltransferase (ChAT)-positive neurons, with little effect on astrogliosis or sensory interneurons. Overall, this study provides strong evidence for the role of chronic ER stress in the pathophysiology of SD and highlights 4-PBA as a promising therapeutic treatment for SD and potentially other related LSDs.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.