{"title":"正常听力者和人工耳蜗植入者在连续语音选择性注意范式中记录的音素相关电位。","authors":"Nina Aldag, Waldo Nogueira","doi":"10.1016/j.heares.2024.109136","DOIUrl":null,"url":null,"abstract":"<div><div>Cochlear implants can restore the ability to understand speech in patients with profound sensorineural hearing loss. At present, it is not fully understood how cochlear implant users perceive speech and how electric hearing provided by a cochlear implant differs from acoustic hearing. Phoneme-related potentials characterize neural responses to individual instances of phonemes extracted from continuous speech.</div><div>This retrospective study investigated phoneme-related potentials in cochlear implant users in a selective attention paradigm. Responses were compared between normal hearing listeners and cochlear implant users, and between attended and unattended conditions. Differences between phoneme categories were compared and a classifier was trained to predict the phoneme category from the neural representation.</div><div>The phoneme-related potentials of cochlear implant users showed similar responses to the ones obtained in normal hearing listeners for early responses (< 100 ms) but not for later responses (> 100 ms) where peaks were smaller or absent. Attention led to an enhancement of the response, whereas latency was mostly not affected by attention. The temporal morphology of the response was influenced by the phonetic features of the stimulus, allowing a classification of the phoneme category based on the phoneme-related potentials.</div><div>There is a clinical need for methods that can rapidly and objectively assess the speech understanding performance of cochlear implant users. Phoneme-related potentials may provide such a link between the acoustic and the neural representations of phonemes. They may also reveal the challenges of individual subjects and thus provide indications for patient-specific auditory training, rehabilitation programs or the fitting of cochlear implant parameters.</div></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phoneme-related potentials recorded from normal hearing listeners and cochlear implant users in a selective attention paradigm to continuous speech\",\"authors\":\"Nina Aldag, Waldo Nogueira\",\"doi\":\"10.1016/j.heares.2024.109136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cochlear implants can restore the ability to understand speech in patients with profound sensorineural hearing loss. At present, it is not fully understood how cochlear implant users perceive speech and how electric hearing provided by a cochlear implant differs from acoustic hearing. Phoneme-related potentials characterize neural responses to individual instances of phonemes extracted from continuous speech.</div><div>This retrospective study investigated phoneme-related potentials in cochlear implant users in a selective attention paradigm. Responses were compared between normal hearing listeners and cochlear implant users, and between attended and unattended conditions. Differences between phoneme categories were compared and a classifier was trained to predict the phoneme category from the neural representation.</div><div>The phoneme-related potentials of cochlear implant users showed similar responses to the ones obtained in normal hearing listeners for early responses (< 100 ms) but not for later responses (> 100 ms) where peaks were smaller or absent. Attention led to an enhancement of the response, whereas latency was mostly not affected by attention. The temporal morphology of the response was influenced by the phonetic features of the stimulus, allowing a classification of the phoneme category based on the phoneme-related potentials.</div><div>There is a clinical need for methods that can rapidly and objectively assess the speech understanding performance of cochlear implant users. Phoneme-related potentials may provide such a link between the acoustic and the neural representations of phonemes. They may also reveal the challenges of individual subjects and thus provide indications for patient-specific auditory training, rehabilitation programs or the fitting of cochlear implant parameters.</div></div>\",\"PeriodicalId\":12881,\"journal\":{\"name\":\"Hearing Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001898\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001898","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Phoneme-related potentials recorded from normal hearing listeners and cochlear implant users in a selective attention paradigm to continuous speech
Cochlear implants can restore the ability to understand speech in patients with profound sensorineural hearing loss. At present, it is not fully understood how cochlear implant users perceive speech and how electric hearing provided by a cochlear implant differs from acoustic hearing. Phoneme-related potentials characterize neural responses to individual instances of phonemes extracted from continuous speech.
This retrospective study investigated phoneme-related potentials in cochlear implant users in a selective attention paradigm. Responses were compared between normal hearing listeners and cochlear implant users, and between attended and unattended conditions. Differences between phoneme categories were compared and a classifier was trained to predict the phoneme category from the neural representation.
The phoneme-related potentials of cochlear implant users showed similar responses to the ones obtained in normal hearing listeners for early responses (< 100 ms) but not for later responses (> 100 ms) where peaks were smaller or absent. Attention led to an enhancement of the response, whereas latency was mostly not affected by attention. The temporal morphology of the response was influenced by the phonetic features of the stimulus, allowing a classification of the phoneme category based on the phoneme-related potentials.
There is a clinical need for methods that can rapidly and objectively assess the speech understanding performance of cochlear implant users. Phoneme-related potentials may provide such a link between the acoustic and the neural representations of phonemes. They may also reveal the challenges of individual subjects and thus provide indications for patient-specific auditory training, rehabilitation programs or the fitting of cochlear implant parameters.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.