Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu
{"title":"过表达 HvVDE 基因可提高转基因烟草(Nicotiana tabacum)的光保护能力。","authors":"Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu","doi":"10.1071/FP24180","DOIUrl":null,"url":null,"abstract":"<p><p>Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overexpression of <i>HvVDE</i> gene improved light protection in transgenic tobacco (<i>Nicotiana tabacum</i>).\",\"authors\":\"Xiaojie Qu, Deyu Che, Fangting Qin, Guang Huang, Hongzhang Liu\",\"doi\":\"10.1071/FP24180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24180\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24180","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Overexpression of HvVDE gene improved light protection in transgenic tobacco (Nicotiana tabacum).
Hosta is commonly acknowledged as a popular and preferred plant for landscaping and gardening. The 'sunburn' caused by prolonged exposure to strong sunlight is reducing the ornamental values of Hosta plants. However, there is a scarcity of research focusing on the genetic components linked to light-induced harm in Hosta . Here, the violaxanthin de-epoxidase (VDE) homolog from Hosta ventricosa was isolated and functionally identified through conducting HvVDE -overexpression tobacco (Nicotiana tabacum ) lines. The results showed that HvVDE encodes a putative protein comprising 481 amino acids with a molecular weight of 54.304kDa. The phylogenetic analysis found that HvVDE exhibited close similarity to JcVDE. Besides, the expression patterns of HvVDE found that HvVDE was expressed differently across tissues, withexpression induced by high light intensities. And overexpression of HvVDE led to the restoration of non-photochemical quenching in tobacco, suggesting that HvVDE plays a role in dissipating excess light energy as thermal energy in H. ventricosa . These findings underscore the significance of HvVDE in mitigating photoinhibition and enhancing photoprotection mechanisms in H. ventricosa .
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.