Jikai Che, Qing Liang, Yifan Xia, Yang Liu, Hongshan Li, Ninggang Hu, Weibo Cheng, Hong Zhang, Hong Zhang, Haipeng Lan
{"title":"基于近红外光谱和机器学习的库尔勒香梨内部质量无损检测方法研究","authors":"Jikai Che, Qing Liang, Yifan Xia, Yang Liu, Hongshan Li, Ninggang Hu, Weibo Cheng, Hong Zhang, Hong Zhang, Haipeng Lan","doi":"10.3390/foods13213522","DOIUrl":null,"url":null,"abstract":"<p><p>Quality control and grading of Korla fragrant pears significantly impact their commercial value. Rapid and non-destructive detection of soluble solids content (SSC) and firmness is crucial to improving this. This study proposes a method combining near-infrared spectroscopy (NIRS) with machine learning for the rapid, non-destructive detection of SSC and firmness in Korla pears. By analyzing absorbance in the 900-1800 nm range, six preprocessing methods-Savitzky-Golay derivative (SGD), standard normal variate (SNV), multiplicative scatter correction (MSC), Savitzky-Golay smoothing (SGS), vector normalization (VN), and min-max normalization (MMN)-were applied to the raw spectral data. uninformative variable elimination (UVE) and successive projections algorithm (SPA) were then used to extract effective wavelengths. Partial least squares regression (PLSR) models were developed for SSC and firmness based on the extracted data. The results showed that all preprocessing and wavelength-extraction methods improved model accuracy. The optimal SSC prediction model was MSC-SPA-PLSR (R = 0.93, RMSE = 0.195), and the best hardness prediction model was MSC-UVE-PLSR (R = 0.83, RMSE = 0.249). This research aids in establishing a non-destructive testing system, offering producers a rapid and accurate quality assessment tool, and provides the food industry with better production control measures to enhance standardization and market competitiveness of Korla pears.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"13 21","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545374/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Study on Nondestructive Detection Methods for Internal Quality of Korla Fragrant Pears Based on Near-Infrared Spectroscopy and Machine Learning.\",\"authors\":\"Jikai Che, Qing Liang, Yifan Xia, Yang Liu, Hongshan Li, Ninggang Hu, Weibo Cheng, Hong Zhang, Hong Zhang, Haipeng Lan\",\"doi\":\"10.3390/foods13213522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quality control and grading of Korla fragrant pears significantly impact their commercial value. Rapid and non-destructive detection of soluble solids content (SSC) and firmness is crucial to improving this. This study proposes a method combining near-infrared spectroscopy (NIRS) with machine learning for the rapid, non-destructive detection of SSC and firmness in Korla pears. By analyzing absorbance in the 900-1800 nm range, six preprocessing methods-Savitzky-Golay derivative (SGD), standard normal variate (SNV), multiplicative scatter correction (MSC), Savitzky-Golay smoothing (SGS), vector normalization (VN), and min-max normalization (MMN)-were applied to the raw spectral data. uninformative variable elimination (UVE) and successive projections algorithm (SPA) were then used to extract effective wavelengths. Partial least squares regression (PLSR) models were developed for SSC and firmness based on the extracted data. The results showed that all preprocessing and wavelength-extraction methods improved model accuracy. The optimal SSC prediction model was MSC-SPA-PLSR (R = 0.93, RMSE = 0.195), and the best hardness prediction model was MSC-UVE-PLSR (R = 0.83, RMSE = 0.249). This research aids in establishing a non-destructive testing system, offering producers a rapid and accurate quality assessment tool, and provides the food industry with better production control measures to enhance standardization and market competitiveness of Korla pears.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods13213522\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods13213522","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Study on Nondestructive Detection Methods for Internal Quality of Korla Fragrant Pears Based on Near-Infrared Spectroscopy and Machine Learning.
Quality control and grading of Korla fragrant pears significantly impact their commercial value. Rapid and non-destructive detection of soluble solids content (SSC) and firmness is crucial to improving this. This study proposes a method combining near-infrared spectroscopy (NIRS) with machine learning for the rapid, non-destructive detection of SSC and firmness in Korla pears. By analyzing absorbance in the 900-1800 nm range, six preprocessing methods-Savitzky-Golay derivative (SGD), standard normal variate (SNV), multiplicative scatter correction (MSC), Savitzky-Golay smoothing (SGS), vector normalization (VN), and min-max normalization (MMN)-were applied to the raw spectral data. uninformative variable elimination (UVE) and successive projections algorithm (SPA) were then used to extract effective wavelengths. Partial least squares regression (PLSR) models were developed for SSC and firmness based on the extracted data. The results showed that all preprocessing and wavelength-extraction methods improved model accuracy. The optimal SSC prediction model was MSC-SPA-PLSR (R = 0.93, RMSE = 0.195), and the best hardness prediction model was MSC-UVE-PLSR (R = 0.83, RMSE = 0.249). This research aids in establishing a non-destructive testing system, offering producers a rapid and accurate quality assessment tool, and provides the food industry with better production control measures to enhance standardization and market competitiveness of Korla pears.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds