{"title":"甘露糖/硬脂酰氯双功能化聚乙烯亚胺作为核酸疫苗载体,促进巨噬细胞摄取。","authors":"Lu Bai, Xiaoqi Chen, Chengyu Li, Haijun Zhou, Yantao Li, Jijun Xiao, Fen Zhang, Hua Cheng, Mengmeng Zhou","doi":"10.1080/10717544.2024.2427138","DOIUrl":null,"url":null,"abstract":"<p><p>Transmembrane transport remains a significant challenge for nucleic acid vaccine vectors. Promoting the ability of immune cells, such as macrophages, to capture foreign stimuli is also an effective approach to improving cross-presentation. In addition, polyethyleneimine (PEI) has gained attention in the field of nucleic acid vaccine carriers due to its excellent gene transfection efficiency and unique proton buffering effect. However, although high molecular weight PEI exhibits high efficiency, its high-density positive charges make it highly toxic, which limits its application. In this study, mannose/stearyl chloride functionalized polyethylenimine (SA-Man-PEI) was prepared by functionalizing PEI (molecular weight of 25 kDa) with mannose with immunomodulatory and phagocyte targeting effects, and an alkyl hydrophobic chain segment, which could easily promote cell uptake. Moreover, the functionalized-PEI retains a strong proton buffering effect, which helps the carrier escape from the lysosome. The particle sizes of the composite particles formed by SA-Man-PEI and ovalbumin (OVA) were below 200 nm, with good storage stability at both 4 °C and 37 °C. At a drug concentration of 2 μg/mL, the cell survival rate of functionalized-PEI was 19.2% higher than that of unfunctionalized PEI. In vitro macrophage endocytosis experiments showed that SA-Man-PEI could significantly enhance the macrophage uptake of composite particles, compared to unfunctionalized PEI or single-functionalized PEI. This study offers a new approach for developing PEI as a nucleic acid vaccine carrier, which could simultaneously enhance cell targeting and promote cell uptake.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2427138"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mannose/stearyl chloride doubly functionalized polyethylenimine as a nucleic acid vaccine carrier to promote macrophage uptake.\",\"authors\":\"Lu Bai, Xiaoqi Chen, Chengyu Li, Haijun Zhou, Yantao Li, Jijun Xiao, Fen Zhang, Hua Cheng, Mengmeng Zhou\",\"doi\":\"10.1080/10717544.2024.2427138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transmembrane transport remains a significant challenge for nucleic acid vaccine vectors. Promoting the ability of immune cells, such as macrophages, to capture foreign stimuli is also an effective approach to improving cross-presentation. In addition, polyethyleneimine (PEI) has gained attention in the field of nucleic acid vaccine carriers due to its excellent gene transfection efficiency and unique proton buffering effect. However, although high molecular weight PEI exhibits high efficiency, its high-density positive charges make it highly toxic, which limits its application. In this study, mannose/stearyl chloride functionalized polyethylenimine (SA-Man-PEI) was prepared by functionalizing PEI (molecular weight of 25 kDa) with mannose with immunomodulatory and phagocyte targeting effects, and an alkyl hydrophobic chain segment, which could easily promote cell uptake. Moreover, the functionalized-PEI retains a strong proton buffering effect, which helps the carrier escape from the lysosome. The particle sizes of the composite particles formed by SA-Man-PEI and ovalbumin (OVA) were below 200 nm, with good storage stability at both 4 °C and 37 °C. At a drug concentration of 2 μg/mL, the cell survival rate of functionalized-PEI was 19.2% higher than that of unfunctionalized PEI. In vitro macrophage endocytosis experiments showed that SA-Man-PEI could significantly enhance the macrophage uptake of composite particles, compared to unfunctionalized PEI or single-functionalized PEI. This study offers a new approach for developing PEI as a nucleic acid vaccine carrier, which could simultaneously enhance cell targeting and promote cell uptake.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"31 1\",\"pages\":\"2427138\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2024.2427138\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2024.2427138","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Mannose/stearyl chloride doubly functionalized polyethylenimine as a nucleic acid vaccine carrier to promote macrophage uptake.
Transmembrane transport remains a significant challenge for nucleic acid vaccine vectors. Promoting the ability of immune cells, such as macrophages, to capture foreign stimuli is also an effective approach to improving cross-presentation. In addition, polyethyleneimine (PEI) has gained attention in the field of nucleic acid vaccine carriers due to its excellent gene transfection efficiency and unique proton buffering effect. However, although high molecular weight PEI exhibits high efficiency, its high-density positive charges make it highly toxic, which limits its application. In this study, mannose/stearyl chloride functionalized polyethylenimine (SA-Man-PEI) was prepared by functionalizing PEI (molecular weight of 25 kDa) with mannose with immunomodulatory and phagocyte targeting effects, and an alkyl hydrophobic chain segment, which could easily promote cell uptake. Moreover, the functionalized-PEI retains a strong proton buffering effect, which helps the carrier escape from the lysosome. The particle sizes of the composite particles formed by SA-Man-PEI and ovalbumin (OVA) were below 200 nm, with good storage stability at both 4 °C and 37 °C. At a drug concentration of 2 μg/mL, the cell survival rate of functionalized-PEI was 19.2% higher than that of unfunctionalized PEI. In vitro macrophage endocytosis experiments showed that SA-Man-PEI could significantly enhance the macrophage uptake of composite particles, compared to unfunctionalized PEI or single-functionalized PEI. This study offers a new approach for developing PEI as a nucleic acid vaccine carrier, which could simultaneously enhance cell targeting and promote cell uptake.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.