Sebastian Einhauser, Claudia Asam, Manuela Weps, Antonia Senninger, David Peterhoff, Stilla Bauernfeind, Benedikt Asbach, George William Carnell, Jonathan Luke Heeney, Monika Wytopil, André Fuchs, Helmut Messmann, Martina Prelog, Johannes Liese, Samuel D Jeske, Ulrike Protzer, Michael Hoelscher, Christof Geldmacher, Klaus Überla, Philipp Steininger, Ralf Wagner
{"title":"SARS-CoV-2 突破性感染对中和抗体反应印记的纵向影响。","authors":"Sebastian Einhauser, Claudia Asam, Manuela Weps, Antonia Senninger, David Peterhoff, Stilla Bauernfeind, Benedikt Asbach, George William Carnell, Jonathan Luke Heeney, Monika Wytopil, André Fuchs, Helmut Messmann, Martina Prelog, Johannes Liese, Samuel D Jeske, Ulrike Protzer, Michael Hoelscher, Christof Geldmacher, Klaus Überla, Philipp Steininger, Ralf Wagner","doi":"10.1016/j.ebiom.2024.105438","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study.</p><p><strong>Methods: </strong>173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.2, BA.5, BQ.1.1, XBB.1.5 and JN.1.</p><p><strong>Findings: </strong>Magnitude-breadth-analysis showed enhanced neutralization capacity in vaccinated individuals against multiple VOCs. Longitudinal analysis revealed sustained neutralization magnitude-breadth after antigenically distant Delta or Omicron breakthrough infection (BTI), with triple-vaccinated individuals showing significantly elevated titres and improved breadth. Antigenic mapping and antibody landscaping revealed initial boosting of vaccine-induced WT-specific responses after BTI, a shift in neutralization towards infecting VOCs at peak responses and an immune imprinted bias towards dominating WT immunity in the long-term. Despite that bias, machine-learning models confirmed a sustained shift of the immune-profiles following BTI.</p><p><strong>Interpretation: </strong>In summary, our longitudinal analysis revealed delayed and short lived nAb shifts towards the infecting VOC, but an immune imprinted bias towards long-term vaccine induced immunity after BTI.</p><p><strong>Funding: </strong>This work was funded by the Bavarian State Ministry of Science and the Arts for the CoVaKo study and the ForCovid project. The funders had no influence on the study design, data analysis or data interpretation.</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"110 ","pages":"105438"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Longitudinal effects of SARS-CoV-2 breakthrough infection on imprinting of neutralizing antibody responses.\",\"authors\":\"Sebastian Einhauser, Claudia Asam, Manuela Weps, Antonia Senninger, David Peterhoff, Stilla Bauernfeind, Benedikt Asbach, George William Carnell, Jonathan Luke Heeney, Monika Wytopil, André Fuchs, Helmut Messmann, Martina Prelog, Johannes Liese, Samuel D Jeske, Ulrike Protzer, Michael Hoelscher, Christof Geldmacher, Klaus Überla, Philipp Steininger, Ralf Wagner\",\"doi\":\"10.1016/j.ebiom.2024.105438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study.</p><p><strong>Methods: </strong>173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.2, BA.5, BQ.1.1, XBB.1.5 and JN.1.</p><p><strong>Findings: </strong>Magnitude-breadth-analysis showed enhanced neutralization capacity in vaccinated individuals against multiple VOCs. Longitudinal analysis revealed sustained neutralization magnitude-breadth after antigenically distant Delta or Omicron breakthrough infection (BTI), with triple-vaccinated individuals showing significantly elevated titres and improved breadth. Antigenic mapping and antibody landscaping revealed initial boosting of vaccine-induced WT-specific responses after BTI, a shift in neutralization towards infecting VOCs at peak responses and an immune imprinted bias towards dominating WT immunity in the long-term. Despite that bias, machine-learning models confirmed a sustained shift of the immune-profiles following BTI.</p><p><strong>Interpretation: </strong>In summary, our longitudinal analysis revealed delayed and short lived nAb shifts towards the infecting VOC, but an immune imprinted bias towards long-term vaccine induced immunity after BTI.</p><p><strong>Funding: </strong>This work was funded by the Bavarian State Ministry of Science and the Arts for the CoVaKo study and the ForCovid project. The funders had no influence on the study design, data analysis or data interpretation.</p>\",\"PeriodicalId\":11494,\"journal\":{\"name\":\"EBioMedicine\",\"volume\":\"110 \",\"pages\":\"105438\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EBioMedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ebiom.2024.105438\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105438","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Longitudinal effects of SARS-CoV-2 breakthrough infection on imprinting of neutralizing antibody responses.
Background: The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study.
Methods: 173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.2, BA.5, BQ.1.1, XBB.1.5 and JN.1.
Findings: Magnitude-breadth-analysis showed enhanced neutralization capacity in vaccinated individuals against multiple VOCs. Longitudinal analysis revealed sustained neutralization magnitude-breadth after antigenically distant Delta or Omicron breakthrough infection (BTI), with triple-vaccinated individuals showing significantly elevated titres and improved breadth. Antigenic mapping and antibody landscaping revealed initial boosting of vaccine-induced WT-specific responses after BTI, a shift in neutralization towards infecting VOCs at peak responses and an immune imprinted bias towards dominating WT immunity in the long-term. Despite that bias, machine-learning models confirmed a sustained shift of the immune-profiles following BTI.
Interpretation: In summary, our longitudinal analysis revealed delayed and short lived nAb shifts towards the infecting VOC, but an immune imprinted bias towards long-term vaccine induced immunity after BTI.
Funding: This work was funded by the Bavarian State Ministry of Science and the Arts for the CoVaKo study and the ForCovid project. The funders had no influence on the study design, data analysis or data interpretation.
EBioMedicineBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍:
eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.