Samyogita Hardikar, Brontë McKeown, Adam Turnbull, Ting Xu, Sofie L Valk, Boris C Bernhardt, Daniel S Margulies, Michael P Milham, Elizabeth Jefferies, Robert Leech, Arno Villringer, Jonathan Smallwood
{"title":"在不同的情况下,人格特征与大脑活动的关联也各不相同。","authors":"Samyogita Hardikar, Brontë McKeown, Adam Turnbull, Ting Xu, Sofie L Valk, Boris C Bernhardt, Daniel S Margulies, Michael P Milham, Elizabeth Jefferies, Robert Leech, Arno Villringer, Jonathan Smallwood","doi":"10.1038/s42003-024-07061-0","DOIUrl":null,"url":null,"abstract":"<p><p>Human cognition supports complex behaviour across a range of situations, and traits (e.g. personality) influence how we react in these different contexts. Although viewing traits as situationally grounded is common in social sciences, often studies attempting to link brain activity to human traits examine brain-trait associations in a single task, or, under passive conditions like wakeful rest. These studies, often referred to as brain wide association studies (BWAS) have recently become the subject of controversy because results are often unreliable even with large sample sizes. Although there are important statistical reasons why BWAS yield inconsistent results, we hypothesised that the situation in which brain activity is measured will impact the power in detecting a reliable link to specific traits. We performed a state-space analysis where tasks from the Human Connectome Project (HCP) were organized into a low-dimensional space based on how they activated different large-scale neural systems. We examined how individuals' observed brain activity across these different contexts related to their personality. We found that for multiple personality traits, stronger associations with brain activity emerge in some tasks than others. These data highlight the importance of context-bound views for understanding how brain activity links to trait variation in human behaviour.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"7 1","pages":"1498"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Personality traits vary in their association with brain activity across situations.\",\"authors\":\"Samyogita Hardikar, Brontë McKeown, Adam Turnbull, Ting Xu, Sofie L Valk, Boris C Bernhardt, Daniel S Margulies, Michael P Milham, Elizabeth Jefferies, Robert Leech, Arno Villringer, Jonathan Smallwood\",\"doi\":\"10.1038/s42003-024-07061-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human cognition supports complex behaviour across a range of situations, and traits (e.g. personality) influence how we react in these different contexts. Although viewing traits as situationally grounded is common in social sciences, often studies attempting to link brain activity to human traits examine brain-trait associations in a single task, or, under passive conditions like wakeful rest. These studies, often referred to as brain wide association studies (BWAS) have recently become the subject of controversy because results are often unreliable even with large sample sizes. Although there are important statistical reasons why BWAS yield inconsistent results, we hypothesised that the situation in which brain activity is measured will impact the power in detecting a reliable link to specific traits. We performed a state-space analysis where tasks from the Human Connectome Project (HCP) were organized into a low-dimensional space based on how they activated different large-scale neural systems. We examined how individuals' observed brain activity across these different contexts related to their personality. We found that for multiple personality traits, stronger associations with brain activity emerge in some tasks than others. These data highlight the importance of context-bound views for understanding how brain activity links to trait variation in human behaviour.</p>\",\"PeriodicalId\":10552,\"journal\":{\"name\":\"Communications Biology\",\"volume\":\"7 1\",\"pages\":\"1498\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s42003-024-07061-0\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07061-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Personality traits vary in their association with brain activity across situations.
Human cognition supports complex behaviour across a range of situations, and traits (e.g. personality) influence how we react in these different contexts. Although viewing traits as situationally grounded is common in social sciences, often studies attempting to link brain activity to human traits examine brain-trait associations in a single task, or, under passive conditions like wakeful rest. These studies, often referred to as brain wide association studies (BWAS) have recently become the subject of controversy because results are often unreliable even with large sample sizes. Although there are important statistical reasons why BWAS yield inconsistent results, we hypothesised that the situation in which brain activity is measured will impact the power in detecting a reliable link to specific traits. We performed a state-space analysis where tasks from the Human Connectome Project (HCP) were organized into a low-dimensional space based on how they activated different large-scale neural systems. We examined how individuals' observed brain activity across these different contexts related to their personality. We found that for multiple personality traits, stronger associations with brain activity emerge in some tasks than others. These data highlight the importance of context-bound views for understanding how brain activity links to trait variation in human behaviour.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.