Davide Ciccarelli, Ben M. J. Lancaster, D. Christopher Braddock, Matteo Calvaresi, Miroslav Mišík, Siegfried Knasmüller, Edoardo Jun Mattioli, Francesco Zerbetto, Andrew J. P. White, Tim Marczylo, Timothy W. Gant, Leon P. Barron
{"title":"饮用水中 2,2,4-三溴-5-羟基环戊-4-烯-1,3-二酮的结构确认、反应性、细菌诱变性和定量。","authors":"Davide Ciccarelli, Ben M. J. Lancaster, D. Christopher Braddock, Matteo Calvaresi, Miroslav Mišík, Siegfried Knasmüller, Edoardo Jun Mattioli, Francesco Zerbetto, Andrew J. P. White, Tim Marczylo, Timothy W. Gant, Leon P. Barron","doi":"10.1038/s42004-024-01356-3","DOIUrl":null,"url":null,"abstract":"The presence of two new disinfectant by-product (DBP) groups in the UK was recently shown using non-target analysis, halogenated-hydroxycyclopentenediones and halogenated-methanesulfonic acids. In this work, we confirmed the structure of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione (TBHCD), and quantified it together with dibromomethanesulfonic acid at 122 ± 34 and 326 ± 157 ng L−1 on average in London’s drinking water, respectively (n = 21). We found TBHCD to be photolabile and unstable in tap water and at alkaline pH. Furthermore, spectral and computational data for TBHCD and three other halogenated-hydroxycyclopentenediones indicated they could act as a source of radicals in water and in the body. Importantly, TBHCD was calculated to have a 14.5 kcal mol−1 lower C-Br bond dissociation enthalpy than the N-Br bond of N-bromosuccinimide, a common radical substitution reagent used in organic synthesis. TBHCD was mutagenic in Salmonella/microsome assays using strains TA98, TA100 and TA102. This work reveals the unique features, activity and toxicity of trihalogenated hydroxycyclopent-4-ene-1,3-diones, prompting a need to more comprehensively assess their risks. Halogenated disinfection by-products are a recognized health risk, but unequivocal identification and monitoring of new compounds is challenging, which prevents risk assessment. Here, the authors identify and quantify 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione in London drinking water, and describe the compound’s activity and toxicity.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01356-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Structure confirmation, reactivity, bacterial mutagenicity and quantification of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione in drinking water\",\"authors\":\"Davide Ciccarelli, Ben M. J. Lancaster, D. Christopher Braddock, Matteo Calvaresi, Miroslav Mišík, Siegfried Knasmüller, Edoardo Jun Mattioli, Francesco Zerbetto, Andrew J. P. White, Tim Marczylo, Timothy W. Gant, Leon P. Barron\",\"doi\":\"10.1038/s42004-024-01356-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The presence of two new disinfectant by-product (DBP) groups in the UK was recently shown using non-target analysis, halogenated-hydroxycyclopentenediones and halogenated-methanesulfonic acids. In this work, we confirmed the structure of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione (TBHCD), and quantified it together with dibromomethanesulfonic acid at 122 ± 34 and 326 ± 157 ng L−1 on average in London’s drinking water, respectively (n = 21). We found TBHCD to be photolabile and unstable in tap water and at alkaline pH. Furthermore, spectral and computational data for TBHCD and three other halogenated-hydroxycyclopentenediones indicated they could act as a source of radicals in water and in the body. Importantly, TBHCD was calculated to have a 14.5 kcal mol−1 lower C-Br bond dissociation enthalpy than the N-Br bond of N-bromosuccinimide, a common radical substitution reagent used in organic synthesis. TBHCD was mutagenic in Salmonella/microsome assays using strains TA98, TA100 and TA102. This work reveals the unique features, activity and toxicity of trihalogenated hydroxycyclopent-4-ene-1,3-diones, prompting a need to more comprehensively assess their risks. Halogenated disinfection by-products are a recognized health risk, but unequivocal identification and monitoring of new compounds is challenging, which prevents risk assessment. Here, the authors identify and quantify 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione in London drinking water, and describe the compound’s activity and toxicity.\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42004-024-01356-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s42004-024-01356-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01356-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Structure confirmation, reactivity, bacterial mutagenicity and quantification of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione in drinking water
The presence of two new disinfectant by-product (DBP) groups in the UK was recently shown using non-target analysis, halogenated-hydroxycyclopentenediones and halogenated-methanesulfonic acids. In this work, we confirmed the structure of 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione (TBHCD), and quantified it together with dibromomethanesulfonic acid at 122 ± 34 and 326 ± 157 ng L−1 on average in London’s drinking water, respectively (n = 21). We found TBHCD to be photolabile and unstable in tap water and at alkaline pH. Furthermore, spectral and computational data for TBHCD and three other halogenated-hydroxycyclopentenediones indicated they could act as a source of radicals in water and in the body. Importantly, TBHCD was calculated to have a 14.5 kcal mol−1 lower C-Br bond dissociation enthalpy than the N-Br bond of N-bromosuccinimide, a common radical substitution reagent used in organic synthesis. TBHCD was mutagenic in Salmonella/microsome assays using strains TA98, TA100 and TA102. This work reveals the unique features, activity and toxicity of trihalogenated hydroxycyclopent-4-ene-1,3-diones, prompting a need to more comprehensively assess their risks. Halogenated disinfection by-products are a recognized health risk, but unequivocal identification and monitoring of new compounds is challenging, which prevents risk assessment. Here, the authors identify and quantify 2,2,4-tribromo-5-hydroxycyclopent-4-ene-1,3-dione in London drinking water, and describe the compound’s activity and toxicity.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.