实现酒石酸的可持续利用和生产。

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chemical record Pub Date : 2024-11-01 Epub Date: 2024-11-09 DOI:10.1002/tcr.202400099
Xiran Li, Mengyuan Liu, Wenhan Li, Xin Wang, Shiyu Wang, Haoran Yin, Ning Yan, Xin Jin, Chaohe Yang
{"title":"实现酒石酸的可持续利用和生产。","authors":"Xiran Li, Mengyuan Liu, Wenhan Li, Xin Wang, Shiyu Wang, Haoran Yin, Ning Yan, Xin Jin, Chaohe Yang","doi":"10.1002/tcr.202400099","DOIUrl":null,"url":null,"abstract":"<p><p>Global efforts toward establishing a circular carbon economy have guided research interests towards exploring renewable technologies that can replace environmentally harmful fossil fuel-based production routes. In this context, sugar-based bio-derived substrates have been identified as renewable molecules for future implementation in chemical industries. Tartaric acid, a special C<sub>4</sub> bio-compound with two hydroxyl and carboxylic groups in the structure, displays great potential for the food, polymer, and pharmaceutical industries due to its unique biological reactivity and performance-enhancing properties. To this point, there has yet to be a comprehensive literature review and perspective on the applications and synthesis of tartaric acid. As such, we have conducted a detailed and thorough outlook and discussion in terms of biological activity, organic synthesis, catalysis, structural characterization and synthetic routes. Lastly, we provide a critical discussion on the applications and synthesis of tartaric acid to give our insights into developing sustainable chemical technologies for the future.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":" ","pages":"e202400099"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Sustainable Utilization and Production of Tartaric Acid.\",\"authors\":\"Xiran Li, Mengyuan Liu, Wenhan Li, Xin Wang, Shiyu Wang, Haoran Yin, Ning Yan, Xin Jin, Chaohe Yang\",\"doi\":\"10.1002/tcr.202400099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global efforts toward establishing a circular carbon economy have guided research interests towards exploring renewable technologies that can replace environmentally harmful fossil fuel-based production routes. In this context, sugar-based bio-derived substrates have been identified as renewable molecules for future implementation in chemical industries. Tartaric acid, a special C<sub>4</sub> bio-compound with two hydroxyl and carboxylic groups in the structure, displays great potential for the food, polymer, and pharmaceutical industries due to its unique biological reactivity and performance-enhancing properties. To this point, there has yet to be a comprehensive literature review and perspective on the applications and synthesis of tartaric acid. As such, we have conducted a detailed and thorough outlook and discussion in terms of biological activity, organic synthesis, catalysis, structural characterization and synthetic routes. Lastly, we provide a critical discussion on the applications and synthesis of tartaric acid to give our insights into developing sustainable chemical technologies for the future.</p>\",\"PeriodicalId\":10046,\"journal\":{\"name\":\"Chemical record\",\"volume\":\" \",\"pages\":\"e202400099\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical record\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/tcr.202400099\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400099","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全球为建立循环碳经济所做的努力引导研究兴趣转向探索可替代对环境有害的化石燃料生产路线的可再生技术。在此背景下,以糖为基础的生物衍生底物已被确定为未来可用于化学工业的可再生分子。酒石酸是一种特殊的 C4 生物化合物,其结构中含有两个羟基和羧基,由于其独特的生物反应性和性能增强特性,在食品、聚合物和制药行业具有巨大潜力。目前,还没有关于酒石酸应用和合成的全面文献综述和观点。因此,我们从生物活性、有机合成、催化、结构特征和合成路线等方面进行了详细而深入的展望和讨论。最后,我们对酒石酸的应用和合成进行了深入探讨,为未来开发可持续化学技术提供了真知灼见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Sustainable Utilization and Production of Tartaric Acid.

Global efforts toward establishing a circular carbon economy have guided research interests towards exploring renewable technologies that can replace environmentally harmful fossil fuel-based production routes. In this context, sugar-based bio-derived substrates have been identified as renewable molecules for future implementation in chemical industries. Tartaric acid, a special C4 bio-compound with two hydroxyl and carboxylic groups in the structure, displays great potential for the food, polymer, and pharmaceutical industries due to its unique biological reactivity and performance-enhancing properties. To this point, there has yet to be a comprehensive literature review and perspective on the applications and synthesis of tartaric acid. As such, we have conducted a detailed and thorough outlook and discussion in terms of biological activity, organic synthesis, catalysis, structural characterization and synthetic routes. Lastly, we provide a critical discussion on the applications and synthesis of tartaric acid to give our insights into developing sustainable chemical technologies for the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信