Ahmed E Abasaeed, Ahmed A Ibrahim, Anis H Fakeeha, Mohammed O Bayazed, Mabrook S Amer, Jehad K Abu-Dahrieh, Ahmed S Al-Fatesh
{"title":"以混合氧化物(Sc-Ce-Zr)为支撑的 Ni-Co 双金属催化剂用于增强甲烷干法重整。","authors":"Ahmed E Abasaeed, Ahmed A Ibrahim, Anis H Fakeeha, Mohammed O Bayazed, Mabrook S Amer, Jehad K Abu-Dahrieh, Ahmed S Al-Fatesh","doi":"10.1002/open.202400086","DOIUrl":null,"url":null,"abstract":"<p><p>Dry methane reforming (DRM) presents a viable pathway for converting greenhouse gases into useful syngas. Nevertheless, the procedure requires robust and reasonably priced catalysts. This study explored using cost-effective cobalt and nickel combined into a single catalyst with different metal ratios. The reaction was conducted in a fixed reactor at 700 °C. The findings indicate that the incorporation of cobalt significantly enhances catalyst performance by preventing metal sintering, improving metal dispersion, and promoting beneficial metal-support interactions. The best-performing catalyst (3.75Ni+1.25Co-ScCeZr) achieved a good conversion rate of CH<sub>4</sub> and CO<sub>2</sub> at 46.8 %, and 60 % respectively after 330 minutes while maintaining good stability. The TGA and CO<sub>2</sub>-TPD analysis results show that the addition of Co to Ni reduces carbon formation, and increases the amount of strong basic sites and isolated O<sub>2</sub>- species, and the total amount of CO<sub>2</sub> desorbed. These results collectively highlight the potential of cobalt-nickel catalysts for practical DRM applications and contribute to developing sustainable energy technologies.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400086"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ni-Co Bimetallic Catalysts Supported on Mixed Oxides (Sc-Ce-Zr) for Enhanced Methane Dry Reforming.\",\"authors\":\"Ahmed E Abasaeed, Ahmed A Ibrahim, Anis H Fakeeha, Mohammed O Bayazed, Mabrook S Amer, Jehad K Abu-Dahrieh, Ahmed S Al-Fatesh\",\"doi\":\"10.1002/open.202400086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dry methane reforming (DRM) presents a viable pathway for converting greenhouse gases into useful syngas. Nevertheless, the procedure requires robust and reasonably priced catalysts. This study explored using cost-effective cobalt and nickel combined into a single catalyst with different metal ratios. The reaction was conducted in a fixed reactor at 700 °C. The findings indicate that the incorporation of cobalt significantly enhances catalyst performance by preventing metal sintering, improving metal dispersion, and promoting beneficial metal-support interactions. The best-performing catalyst (3.75Ni+1.25Co-ScCeZr) achieved a good conversion rate of CH<sub>4</sub> and CO<sub>2</sub> at 46.8 %, and 60 % respectively after 330 minutes while maintaining good stability. The TGA and CO<sub>2</sub>-TPD analysis results show that the addition of Co to Ni reduces carbon formation, and increases the amount of strong basic sites and isolated O<sub>2</sub>- species, and the total amount of CO<sub>2</sub> desorbed. These results collectively highlight the potential of cobalt-nickel catalysts for practical DRM applications and contribute to developing sustainable energy technologies.</p>\",\"PeriodicalId\":9831,\"journal\":{\"name\":\"ChemistryOpen\",\"volume\":\" \",\"pages\":\"e202400086\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemistryOpen\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/open.202400086\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400086","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
干甲烷转化(DRM)是将温室气体转化为有用合成气的可行途径。然而,该工艺需要性能稳定、价格合理的催化剂。本研究探索了使用具有成本效益的钴和镍结合成单一催化剂,并采用不同的金属比例。反应在 700 °C 的固定反应器中进行。研究结果表明,钴的加入可防止金属烧结、改善金属分散性并促进金属与支撑物之间的有益相互作用,从而显著提高催化剂的性能。性能最好的催化剂(3.75Ni+1.25Co-ScCeZr)在 330 分钟后实现了良好的 CH4 和 CO2 转化率,分别为 46.8% 和 60%,同时保持了良好的稳定性。TGA 和 CO2-TPD 分析结果表明,在 Ni 中添加 Co 可减少碳的形成,增加强碱性位点和分离的 O2- 物种的数量,以及 CO2 的解吸总量。这些结果共同凸显了钴-镍催化剂在实际 DRM 应用中的潜力,有助于开发可持续能源技术。
Ni-Co Bimetallic Catalysts Supported on Mixed Oxides (Sc-Ce-Zr) for Enhanced Methane Dry Reforming.
Dry methane reforming (DRM) presents a viable pathway for converting greenhouse gases into useful syngas. Nevertheless, the procedure requires robust and reasonably priced catalysts. This study explored using cost-effective cobalt and nickel combined into a single catalyst with different metal ratios. The reaction was conducted in a fixed reactor at 700 °C. The findings indicate that the incorporation of cobalt significantly enhances catalyst performance by preventing metal sintering, improving metal dispersion, and promoting beneficial metal-support interactions. The best-performing catalyst (3.75Ni+1.25Co-ScCeZr) achieved a good conversion rate of CH4 and CO2 at 46.8 %, and 60 % respectively after 330 minutes while maintaining good stability. The TGA and CO2-TPD analysis results show that the addition of Co to Ni reduces carbon formation, and increases the amount of strong basic sites and isolated O2- species, and the total amount of CO2 desorbed. These results collectively highlight the potential of cobalt-nickel catalysts for practical DRM applications and contribute to developing sustainable energy technologies.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.