针对巨噬细胞表型治疗心力衰竭:一种新方法

IF 4.7 2区 医学 Q1 CHEMISTRY, MEDICINAL
Drug Design, Development and Therapy Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.2147/DDDT.S486816
Min Shi, Hui Yuan, Ya Li, Zhihua Guo, Jiaming Wei
{"title":"针对巨噬细胞表型治疗心力衰竭:一种新方法","authors":"Min Shi, Hui Yuan, Ya Li, Zhihua Guo, Jiaming Wei","doi":"10.2147/DDDT.S486816","DOIUrl":null,"url":null,"abstract":"<p><p>Heart failure (HF) is a disease with high morbidity and mortality rates worldwide and significantly affects human health. Currently, the treatment options for HF are limited, and there is an urgent need to discover new therapeutic targets and strategies. Macrophages are innate immune cells involved in the development of HF. They play a crucial role in maintaining cardiac homeostasis and regulating cardiac stress. Recently, macrophages have received increasing attention as potential targets for treating HF. With the improvement of technological means, the study of macrophages in HF has made great progress. This article discusses the biological functions of macrophage phagocytosis, immune response, and tissue repair. The polarization, pyroptosis, autophagy, and apoptosis are of macrophages, deeply involved in the pathogenesis of HF. Modulation of the phenotypic changes of macrophages can improve immune-inflammation, myocardial fibrosis, energy metabolism, apoptosis, and angiogenesis in HF.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"4927-4942"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549885/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting Macrophage Phenotype for Treating Heart Failure: A New Approach.\",\"authors\":\"Min Shi, Hui Yuan, Ya Li, Zhihua Guo, Jiaming Wei\",\"doi\":\"10.2147/DDDT.S486816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heart failure (HF) is a disease with high morbidity and mortality rates worldwide and significantly affects human health. Currently, the treatment options for HF are limited, and there is an urgent need to discover new therapeutic targets and strategies. Macrophages are innate immune cells involved in the development of HF. They play a crucial role in maintaining cardiac homeostasis and regulating cardiac stress. Recently, macrophages have received increasing attention as potential targets for treating HF. With the improvement of technological means, the study of macrophages in HF has made great progress. This article discusses the biological functions of macrophage phagocytosis, immune response, and tissue repair. The polarization, pyroptosis, autophagy, and apoptosis are of macrophages, deeply involved in the pathogenesis of HF. Modulation of the phenotypic changes of macrophages can improve immune-inflammation, myocardial fibrosis, energy metabolism, apoptosis, and angiogenesis in HF.</p>\",\"PeriodicalId\":11290,\"journal\":{\"name\":\"Drug Design, Development and Therapy\",\"volume\":\"18 \",\"pages\":\"4927-4942\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549885/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Design, Development and Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/DDDT.S486816\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S486816","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

心力衰竭(HF)是一种全球发病率和死亡率都很高的疾病,严重影响人类健康。目前,心力衰竭的治疗方案有限,迫切需要发现新的治疗靶点和策略。巨噬细胞是先天性免疫细胞,参与了心房颤动的发病。它们在维持心脏稳态和调节心脏应激方面发挥着至关重要的作用。最近,巨噬细胞作为治疗高血压的潜在靶点受到越来越多的关注。随着技术手段的改进,巨噬细胞在心房颤动中的研究取得了很大进展。本文讨论了巨噬细胞吞噬、免疫反应和组织修复的生物学功能。巨噬细胞的极化、热噬、自噬和凋亡与高血脂的发病机制密切相关。调控巨噬细胞的表型变化可以改善心房颤动的免疫炎症、心肌纤维化、能量代谢、细胞凋亡和血管生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Targeting Macrophage Phenotype for Treating Heart Failure: A New Approach.

Heart failure (HF) is a disease with high morbidity and mortality rates worldwide and significantly affects human health. Currently, the treatment options for HF are limited, and there is an urgent need to discover new therapeutic targets and strategies. Macrophages are innate immune cells involved in the development of HF. They play a crucial role in maintaining cardiac homeostasis and regulating cardiac stress. Recently, macrophages have received increasing attention as potential targets for treating HF. With the improvement of technological means, the study of macrophages in HF has made great progress. This article discusses the biological functions of macrophage phagocytosis, immune response, and tissue repair. The polarization, pyroptosis, autophagy, and apoptosis are of macrophages, deeply involved in the pathogenesis of HF. Modulation of the phenotypic changes of macrophages can improve immune-inflammation, myocardial fibrosis, energy metabolism, apoptosis, and angiogenesis in HF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Design, Development and Therapy
Drug Design, Development and Therapy CHEMISTRY, MEDICINAL-PHARMACOLOGY & PHARMACY
CiteScore
9.00
自引率
0.00%
发文量
382
审稿时长
>12 weeks
期刊介绍: Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications. The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas. Specific topics covered by the journal include: Drug target identification and validation Phenotypic screening and target deconvolution Biochemical analyses of drug targets and their pathways New methods or relevant applications in molecular/drug design and computer-aided drug discovery* Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes) Structural or molecular biological studies elucidating molecular recognition processes Fragment-based drug discovery Pharmaceutical/red biotechnology Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products** Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing) Preclinical development studies Translational animal models Mechanisms of action and signalling pathways Toxicology Gene therapy, cell therapy and immunotherapy Personalized medicine and pharmacogenomics Clinical drug evaluation Patient safety and sustained use of medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信