{"title":"构建嗜热放线菌链霉菌 K5 株的基因组编辑系统。","authors":"Kenji Yamagishi, Masakazu Ike, Ken Tokuyasu","doi":"10.1093/bbb/zbae157","DOIUrl":null,"url":null,"abstract":"<p><p>Thermophilic actinomycetes significantly contribute to the terrestrial carbon cycle via the rapid degradation of lignocellulosic polysaccharides in composts. In this study, a genome-editing system was constructed for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain, which was isolated from compost. The genome-editing plasmid (pGEK5) harboring nickase Cas9 was derived from the high-copy plasmid pL99 and used for the K5 strain. It was found that pGEK5 could easily be lost from the transformed clone through cultivation on apramycin-free medium and spore formation, enabling its reuse for subsequent genome-editing cycles. With the aid of this plasmid, mutations were sequentially introduced to 2 uracil-DNA glycosylase genes (Udg1 and Udg2) and 1 β-glucosidase gene (Bgl1). Thus, the genome-editing system using pGEK5 enables us to start the functional modification of this thermophilic actinomycete, especially for improved conversion of lignocellulosic biomass.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"80-87"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of a genome-editing system for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain.\",\"authors\":\"Kenji Yamagishi, Masakazu Ike, Ken Tokuyasu\",\"doi\":\"10.1093/bbb/zbae157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thermophilic actinomycetes significantly contribute to the terrestrial carbon cycle via the rapid degradation of lignocellulosic polysaccharides in composts. In this study, a genome-editing system was constructed for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain, which was isolated from compost. The genome-editing plasmid (pGEK5) harboring nickase Cas9 was derived from the high-copy plasmid pL99 and used for the K5 strain. It was found that pGEK5 could easily be lost from the transformed clone through cultivation on apramycin-free medium and spore formation, enabling its reuse for subsequent genome-editing cycles. With the aid of this plasmid, mutations were sequentially introduced to 2 uracil-DNA glycosylase genes (Udg1 and Udg2) and 1 β-glucosidase gene (Bgl1). Thus, the genome-editing system using pGEK5 enables us to start the functional modification of this thermophilic actinomycete, especially for improved conversion of lignocellulosic biomass.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"80-87\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae157\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae157","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Construction of a genome-editing system for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain.
Thermophilic actinomycetes significantly contribute to the terrestrial carbon cycle via the rapid degradation of lignocellulosic polysaccharides in composts. In this study, a genome-editing system was constructed for the thermophilic actinomycete Streptomyces thermodiastaticus K5 strain, which was isolated from compost. The genome-editing plasmid (pGEK5) harboring nickase Cas9 was derived from the high-copy plasmid pL99 and used for the K5 strain. It was found that pGEK5 could easily be lost from the transformed clone through cultivation on apramycin-free medium and spore formation, enabling its reuse for subsequent genome-editing cycles. With the aid of this plasmid, mutations were sequentially introduced to 2 uracil-DNA glycosylase genes (Udg1 and Udg2) and 1 β-glucosidase gene (Bgl1). Thus, the genome-editing system using pGEK5 enables us to start the functional modification of this thermophilic actinomycete, especially for improved conversion of lignocellulosic biomass.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).