枯草芽孢杆菌 S141 可改善干旱条件下大豆根系的生长。

IF 1.4 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Takahiko Kondo, Surachat Sibponkrung, Panlada Tittabutr, Nantakorn Boonkerd, Shu Ishikawa, Neung Teaumroong, Ken-Ichi Yoshida
{"title":"枯草芽孢杆菌 S141 可改善干旱条件下大豆根系的生长。","authors":"Takahiko Kondo, Surachat Sibponkrung, Panlada Tittabutr, Nantakorn Boonkerd, Shu Ishikawa, Neung Teaumroong, Ken-Ichi Yoshida","doi":"10.1093/bbb/zbae168","DOIUrl":null,"url":null,"abstract":"<p><p>Bacillus velezensis S141 helps soybean establish specific symbiosis with strains of Bradyrhizobium diazoefficiens to form larger nodules and improve nitrogen fixation efficiency. In this study, we found that the dry weight of soybean roots increased significantly in the presence of S141 alone under drought conditions. Hence, S141 improved the root growth of soybean under limited water supply conditions. S141 can produce some auxin, which might be involved in the improved nodulation. Inactivating IPyAD of S141, which is required for auxin biosynthesis, did not alter the beneficial effects of S141, suggesting that the root growth was independent of auxin produced by S141. Under drought conditions, soybean exhibited some responses to resist osmotic and oxidative stresses; however, S141 was relevant to none of these responses. Although the mechanism remains unclear, S141 might produce some substances that stimulate the root growth of soybean under drought conditions.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bacillus velezensis S141 improves the root growth of soybean under drought conditions.\",\"authors\":\"Takahiko Kondo, Surachat Sibponkrung, Panlada Tittabutr, Nantakorn Boonkerd, Shu Ishikawa, Neung Teaumroong, Ken-Ichi Yoshida\",\"doi\":\"10.1093/bbb/zbae168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacillus velezensis S141 helps soybean establish specific symbiosis with strains of Bradyrhizobium diazoefficiens to form larger nodules and improve nitrogen fixation efficiency. In this study, we found that the dry weight of soybean roots increased significantly in the presence of S141 alone under drought conditions. Hence, S141 improved the root growth of soybean under limited water supply conditions. S141 can produce some auxin, which might be involved in the improved nodulation. Inactivating IPyAD of S141, which is required for auxin biosynthesis, did not alter the beneficial effects of S141, suggesting that the root growth was independent of auxin produced by S141. Under drought conditions, soybean exhibited some responses to resist osmotic and oxidative stresses; however, S141 was relevant to none of these responses. Although the mechanism remains unclear, S141 might produce some substances that stimulate the root growth of soybean under drought conditions.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbae168\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbae168","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Bacillus velezensis S141 能帮助大豆与 Bradyrhizobium diazoefficiens 菌株建立特定的共生关系,形成更大的结节,提高固氮效率。本研究发现,在干旱条件下,大豆根的干重在单独使用 S141 的情况下显著增加。因此,S141 能改善大豆在有限供水条件下的根系生长。S141 能产生一些辅助素,这可能与提高大豆的结瘤率有关。灭活 S141 的 IPyAD(辅助素生物合成所必需)并没有改变 S141 的有益作用,这表明根系生长与 S141 产生的辅助素无关。在干旱条件下,大豆表现出一些抵抗渗透胁迫和氧化胁迫的反应;然而,S141 与这些反应都无关。虽然机制尚不清楚,但 S141 可能产生了一些物质,在干旱条件下刺激大豆根系的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bacillus velezensis S141 improves the root growth of soybean under drought conditions.

Bacillus velezensis S141 helps soybean establish specific symbiosis with strains of Bradyrhizobium diazoefficiens to form larger nodules and improve nitrogen fixation efficiency. In this study, we found that the dry weight of soybean roots increased significantly in the presence of S141 alone under drought conditions. Hence, S141 improved the root growth of soybean under limited water supply conditions. S141 can produce some auxin, which might be involved in the improved nodulation. Inactivating IPyAD of S141, which is required for auxin biosynthesis, did not alter the beneficial effects of S141, suggesting that the root growth was independent of auxin produced by S141. Under drought conditions, soybean exhibited some responses to resist osmotic and oxidative stresses; however, S141 was relevant to none of these responses. Although the mechanism remains unclear, S141 might produce some substances that stimulate the root growth of soybean under drought conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience, Biotechnology, and Biochemistry
Bioscience, Biotechnology, and Biochemistry 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
183
审稿时长
1 months
期刊介绍: Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信