Jesús Chávez-Reyes, Carlos H. López-Lariz, M. Aisha Acosta-Cruz, Bruno A. Marichal-Cancino
{"title":"急性草甘膦及其主要代谢物氨甲基膦酸(AMPA)会损害雌性大鼠的空间定向、导航、学习和/或记忆能力。","authors":"Jesús Chávez-Reyes, Carlos H. López-Lariz, M. Aisha Acosta-Cruz, Bruno A. Marichal-Cancino","doi":"10.1016/j.bbr.2024.115329","DOIUrl":null,"url":null,"abstract":"<div><div>Human exposure to glyphosate-based herbicides (GBH) has been associated with a range of toxicological effects involving the central nervous system (CNS) such as alterations in learning and memory. Nevertheless, the effects of aminomethylphosphonic acid (AMPA), the main metabolite of glyphosate, remain essentially obscure. Previous preclinical reports suggest that acute intoxication with AMPA and glyphosate exerts decrease on hippocampal acetylcholinesterase activity and produces more metabolomic alterations in the female brain over the male one. Therefore, this work explored the effects of acute AMPA and glyphosate on spatial learning, memory and navigation in female rats. Sprague Dawley rats received a single injection (i.p.) of: (i) vehicle; (ii) 10 or 100 mg/kg of AMPA; or (iii) 10 or 100 mg/kg of glyphosate; subsequently, the Barnes maze paradigm was performance. Animals from the control group decreased latency and the attempts to solve the Barnes maze; and increased the degree of orientation when compared first training sessions (S1) vs. the last one (S4; p < 0.05). In contrast, both 10 and 100 mg/kg of glyphosate and 100 mg/kg of AMPA prevented the decrease in latency and attempts; and the increase of orientation (p > 0.05; S1 vs. S4). Both treatments decreased the use of the spatial navigation strategy (p < 0.05). Besides, glyphosate at the higher dose but not AMPA impaired the spatial memory during the test. Our findings suggest that acute exposure to glyphosate and AMPA similarly affected spatial orientation, navigations, learning and/or memory.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"478 ","pages":"Article 115329"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acute glyphosate and aminomethylphosphonic acid (AMPA), its major metabolite, impaired spatial orientation, navigation, learning and/or memory in female rats\",\"authors\":\"Jesús Chávez-Reyes, Carlos H. López-Lariz, M. Aisha Acosta-Cruz, Bruno A. Marichal-Cancino\",\"doi\":\"10.1016/j.bbr.2024.115329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human exposure to glyphosate-based herbicides (GBH) has been associated with a range of toxicological effects involving the central nervous system (CNS) such as alterations in learning and memory. Nevertheless, the effects of aminomethylphosphonic acid (AMPA), the main metabolite of glyphosate, remain essentially obscure. Previous preclinical reports suggest that acute intoxication with AMPA and glyphosate exerts decrease on hippocampal acetylcholinesterase activity and produces more metabolomic alterations in the female brain over the male one. Therefore, this work explored the effects of acute AMPA and glyphosate on spatial learning, memory and navigation in female rats. Sprague Dawley rats received a single injection (i.p.) of: (i) vehicle; (ii) 10 or 100 mg/kg of AMPA; or (iii) 10 or 100 mg/kg of glyphosate; subsequently, the Barnes maze paradigm was performance. Animals from the control group decreased latency and the attempts to solve the Barnes maze; and increased the degree of orientation when compared first training sessions (S1) vs. the last one (S4; p < 0.05). In contrast, both 10 and 100 mg/kg of glyphosate and 100 mg/kg of AMPA prevented the decrease in latency and attempts; and the increase of orientation (p > 0.05; S1 vs. S4). Both treatments decreased the use of the spatial navigation strategy (p < 0.05). Besides, glyphosate at the higher dose but not AMPA impaired the spatial memory during the test. Our findings suggest that acute exposure to glyphosate and AMPA similarly affected spatial orientation, navigations, learning and/or memory.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"478 \",\"pages\":\"Article 115329\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824004856\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824004856","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Acute glyphosate and aminomethylphosphonic acid (AMPA), its major metabolite, impaired spatial orientation, navigation, learning and/or memory in female rats
Human exposure to glyphosate-based herbicides (GBH) has been associated with a range of toxicological effects involving the central nervous system (CNS) such as alterations in learning and memory. Nevertheless, the effects of aminomethylphosphonic acid (AMPA), the main metabolite of glyphosate, remain essentially obscure. Previous preclinical reports suggest that acute intoxication with AMPA and glyphosate exerts decrease on hippocampal acetylcholinesterase activity and produces more metabolomic alterations in the female brain over the male one. Therefore, this work explored the effects of acute AMPA and glyphosate on spatial learning, memory and navigation in female rats. Sprague Dawley rats received a single injection (i.p.) of: (i) vehicle; (ii) 10 or 100 mg/kg of AMPA; or (iii) 10 or 100 mg/kg of glyphosate; subsequently, the Barnes maze paradigm was performance. Animals from the control group decreased latency and the attempts to solve the Barnes maze; and increased the degree of orientation when compared first training sessions (S1) vs. the last one (S4; p < 0.05). In contrast, both 10 and 100 mg/kg of glyphosate and 100 mg/kg of AMPA prevented the decrease in latency and attempts; and the increase of orientation (p > 0.05; S1 vs. S4). Both treatments decreased the use of the spatial navigation strategy (p < 0.05). Besides, glyphosate at the higher dose but not AMPA impaired the spatial memory during the test. Our findings suggest that acute exposure to glyphosate and AMPA similarly affected spatial orientation, navigations, learning and/or memory.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.