Andrea Moreno , Isabel Quereda-Moraleda , Celia Lozano-Vallhonrat , María Buñuel-Escudero , Sabine Botha , Christopher Kupitz , Stella Lisova , Ray Sierra , Valerio Mariani , Pamela Schleissner , Leland B. Gee , Katerina Dörner , Christina Schmidt , Huijong Han , Marco Kloos , Peter Smyth , Joana Valerio , Joachim Schulz , Raphael de Wijn , Diogo V.M. Melo , Milagros Medina
{"title":"对布鲁氏菌中铁红蛋白-NADP+还原酶的功能和分子机制的新认识。","authors":"Andrea Moreno , Isabel Quereda-Moraleda , Celia Lozano-Vallhonrat , María Buñuel-Escudero , Sabine Botha , Christopher Kupitz , Stella Lisova , Ray Sierra , Valerio Mariani , Pamela Schleissner , Leland B. Gee , Katerina Dörner , Christina Schmidt , Huijong Han , Marco Kloos , Peter Smyth , Joana Valerio , Joachim Schulz , Raphael de Wijn , Diogo V.M. Melo , Milagros Medina","doi":"10.1016/j.abb.2024.110204","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial ferredoxin(flavodoxin)-NADP<sup>+</sup> reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from <em>B. ovis</em> to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe–2S] Fdx ferredoxin, exhibiting a <em>K</em><sub>M</sub><sup>Fdx</sup> in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP<sup>+</sup>/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP<sup>+</sup>/H.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"762 ","pages":"Article 110204"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New insights into the function and molecular mechanisms of Ferredoxin-NADP+ reductase from Brucella ovis\",\"authors\":\"Andrea Moreno , Isabel Quereda-Moraleda , Celia Lozano-Vallhonrat , María Buñuel-Escudero , Sabine Botha , Christopher Kupitz , Stella Lisova , Ray Sierra , Valerio Mariani , Pamela Schleissner , Leland B. Gee , Katerina Dörner , Christina Schmidt , Huijong Han , Marco Kloos , Peter Smyth , Joana Valerio , Joachim Schulz , Raphael de Wijn , Diogo V.M. Melo , Milagros Medina\",\"doi\":\"10.1016/j.abb.2024.110204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bacterial ferredoxin(flavodoxin)-NADP<sup>+</sup> reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from <em>B. ovis</em> to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe–2S] Fdx ferredoxin, exhibiting a <em>K</em><sub>M</sub><sup>Fdx</sup> in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP<sup>+</sup>/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP<sup>+</sup>/H.</div></div>\",\"PeriodicalId\":8174,\"journal\":{\"name\":\"Archives of biochemistry and biophysics\",\"volume\":\"762 \",\"pages\":\"Article 110204\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of biochemistry and biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003986124003266\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986124003266","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
New insights into the function and molecular mechanisms of Ferredoxin-NADP+ reductase from Brucella ovis
Bacterial ferredoxin(flavodoxin)-NADP+ reductases (FPR) primarily catalyze the transfer of reducing equivalents from NADPH to ferredoxin (or flavodoxin) to provide low potential reducing equivalents for the oxidoreductive metabolism. In addition, they can be implicated in regulating reactive oxygen species levels. Here we assess the functionality of FPR from B. ovis to understand its potential roles in the bacteria physiology. We prove that this FPR is active with the endogenous [2Fe–2S] Fdx ferredoxin, exhibiting a KMFdx in the low micromolar range. At the molecular level, this study provides with the first structures of an FPR at room temperature obtained by serial femtosecond crystallography, envisaging increase in flexibility at both the adenine nucleotide moiety of FAD and the C-terminal tail. The produced microcrystals are in addition suitable for future mix-and-inject time-resolved studies with the NADP+/H coenzyme either at synchrotrons or XFELs. Furthermore, the study also predicts the ability of FPR to simultaneously interact with Fdx and NADP+/H.
期刊介绍:
Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics.
Research Areas Include:
• Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing
• Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions
• Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.