预测血液氧合器纤维束内血细胞比容异质性的 CFD 两相血液模型。

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Gianluca Poletti, Ricardo Gómez Bardón, Gabriele Dubini, Giancarlo Pennati
{"title":"预测血液氧合器纤维束内血细胞比容异质性的 CFD 两相血液模型。","authors":"Gianluca Poletti, Ricardo Gómez Bardón, Gabriele Dubini, Giancarlo Pennati","doi":"10.1007/s10439-024-03644-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Blood is commonly treated as single-phase homogeneous fluid in numerical simulations of blood flow within fiber bundles of blood oxygenators. However, microfluidics tests revealed the presence of hematocrit heterogeneity in blood flowing across such geometries. Given the significant role of red blood cells (RBCs) in the oxygenation process, this study aims to propose a multiphase blood model able to correctly describe the experimental evidence and computationally investigate hematocrit heterogeneities inside fiber bundles.</p><p><strong>Methods: </strong>The experimental results of microfluidics tests performed in a previous study were processed and based on quantitative data of image intensity, a two-phase blood model following the Eulerian-Eulerian approach was calibrated and evaluated in its predictive ability against the experimental data. The two-phase model was then used to study the RBCs distribution inside different fiber bundles at average hematocrit values of 25% and 35%, representative of hemodilution in extracorporeal blood circulation.</p><p><strong>Results: </strong>The numerical model proved to be able to describe and predict the experimental phase separation between plasma and RBCs within the microchannel geometry at different test conditions. Moreover, blood flow simulation in commercial fiber bundles revealed the presence of specific patterns in hematocrit distribution and their dependence on variations in bundle microstructure.</p><p><strong>Conclusion: </strong>The two-phase blood model proposed in this study provides a tool for advanced evaluation of local fluid dynamics and identification of optimal bundle microstructure allowing further gas transfer simulations to account for a reliable heterogeneous distribution of RBCs around the oxygenating fibers.</p>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFD Two-Phase Blood Model Predicting the Hematocrit Heterogeneity Inside Fiber Bundles of Blood Oxygenators.\",\"authors\":\"Gianluca Poletti, Ricardo Gómez Bardón, Gabriele Dubini, Giancarlo Pennati\",\"doi\":\"10.1007/s10439-024-03644-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Blood is commonly treated as single-phase homogeneous fluid in numerical simulations of blood flow within fiber bundles of blood oxygenators. However, microfluidics tests revealed the presence of hematocrit heterogeneity in blood flowing across such geometries. Given the significant role of red blood cells (RBCs) in the oxygenation process, this study aims to propose a multiphase blood model able to correctly describe the experimental evidence and computationally investigate hematocrit heterogeneities inside fiber bundles.</p><p><strong>Methods: </strong>The experimental results of microfluidics tests performed in a previous study were processed and based on quantitative data of image intensity, a two-phase blood model following the Eulerian-Eulerian approach was calibrated and evaluated in its predictive ability against the experimental data. The two-phase model was then used to study the RBCs distribution inside different fiber bundles at average hematocrit values of 25% and 35%, representative of hemodilution in extracorporeal blood circulation.</p><p><strong>Results: </strong>The numerical model proved to be able to describe and predict the experimental phase separation between plasma and RBCs within the microchannel geometry at different test conditions. Moreover, blood flow simulation in commercial fiber bundles revealed the presence of specific patterns in hematocrit distribution and their dependence on variations in bundle microstructure.</p><p><strong>Conclusion: </strong>The two-phase blood model proposed in this study provides a tool for advanced evaluation of local fluid dynamics and identification of optimal bundle microstructure allowing further gas transfer simulations to account for a reliable heterogeneous distribution of RBCs around the oxygenating fibers.</p>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10439-024-03644-4\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10439-024-03644-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:在对血液氧合器纤维束内的血流进行数值模拟时,通常将血液视为单相均质流体。然而,微流体测试表明,流经此类几何结构的血液存在血细胞比异质性。鉴于红细胞(RBC)在充氧过程中的重要作用,本研究旨在提出一种能够正确描述实验证据的多相血液模型,并对纤维束内的血细胞比容异质性进行计算研究:方法:对之前研究中进行的微流控测试的实验结果进行处理,并根据图像强度的定量数据,按照欧拉-欧拉方法校准两相血液模型,并评估其对实验数据的预测能力。然后,利用该两相模型研究了在平均血细胞比容值为 25% 和 35% (代表体外血液循环中的血液稀释)时红细胞在不同纤维束内的分布情况:结果:事实证明,数值模型能够描述和预测不同测试条件下微通道几何形状内血浆和红细胞的实验相分离。此外,商用纤维束中的血流模拟显示了血细胞比容分布的特定模式及其与纤维束微结构变化的关系:本研究中提出的两相血液模型为局部流体动力学的高级评估和最佳纤维束微观结构的确定提供了工具,使进一步的气体传输模拟能够考虑到充氧纤维周围红细胞的可靠异质分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CFD Two-Phase Blood Model Predicting the Hematocrit Heterogeneity Inside Fiber Bundles of Blood Oxygenators.

Purpose: Blood is commonly treated as single-phase homogeneous fluid in numerical simulations of blood flow within fiber bundles of blood oxygenators. However, microfluidics tests revealed the presence of hematocrit heterogeneity in blood flowing across such geometries. Given the significant role of red blood cells (RBCs) in the oxygenation process, this study aims to propose a multiphase blood model able to correctly describe the experimental evidence and computationally investigate hematocrit heterogeneities inside fiber bundles.

Methods: The experimental results of microfluidics tests performed in a previous study were processed and based on quantitative data of image intensity, a two-phase blood model following the Eulerian-Eulerian approach was calibrated and evaluated in its predictive ability against the experimental data. The two-phase model was then used to study the RBCs distribution inside different fiber bundles at average hematocrit values of 25% and 35%, representative of hemodilution in extracorporeal blood circulation.

Results: The numerical model proved to be able to describe and predict the experimental phase separation between plasma and RBCs within the microchannel geometry at different test conditions. Moreover, blood flow simulation in commercial fiber bundles revealed the presence of specific patterns in hematocrit distribution and their dependence on variations in bundle microstructure.

Conclusion: The two-phase blood model proposed in this study provides a tool for advanced evaluation of local fluid dynamics and identification of optimal bundle microstructure allowing further gas transfer simulations to account for a reliable heterogeneous distribution of RBCs around the oxygenating fibers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信