Junwen Zhao, Yuting Chen, Qi Tao, Lukas Schreiber, Kiran Suresh, Michael Frei, Muhammad Shahedul Alam, Bing Li, Yaping Zhou, Marcel Baer, Frank Hochholdinger, Changquan Wang, Peng Yu
{"title":"增强的二氧化碳通过根系发育协调水稻中重氮营养体的空间招募","authors":"Junwen Zhao, Yuting Chen, Qi Tao, Lukas Schreiber, Kiran Suresh, Michael Frei, Muhammad Shahedul Alam, Bing Li, Yaping Zhou, Marcel Baer, Frank Hochholdinger, Changquan Wang, Peng Yu","doi":"10.1111/pce.15259","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the reciprocal interaction between root development and coadapted beneficial microbes in response to elevated CO<sub>2</sub> (eCO<sub>2</sub>) will facilitate the identification of nutrient-efficient cultivars for sustainable agriculture. Here, systematic morphological, anatomical, chemical and gene expression assays performed under low-nitrogen conditions revealed that eCO<sub>2</sub> drove the development of the endodermal barrier with respect to L-/S-shaped lateral roots (LRs) in rice. Next, we applied metabolome and endodermal-cell-specific RNA sequencing and showed that rice adapts to eCO<sub>2</sub> by spatially recruiting diazotrophs via flavonoid secretion in L-shaped LRs. Using the rice Casparian strip mutant Oscasp1-1, we confirmed that reduced lignin deposition selectively recruits the diazotrophic family of Oxalobacteraceae to confer tolerance to low nitrogen availability.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced CO<sub>2</sub> Coordinates the Spatial Recruitment of Diazotrophs in Rice Via Root Development.\",\"authors\":\"Junwen Zhao, Yuting Chen, Qi Tao, Lukas Schreiber, Kiran Suresh, Michael Frei, Muhammad Shahedul Alam, Bing Li, Yaping Zhou, Marcel Baer, Frank Hochholdinger, Changquan Wang, Peng Yu\",\"doi\":\"10.1111/pce.15259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the reciprocal interaction between root development and coadapted beneficial microbes in response to elevated CO<sub>2</sub> (eCO<sub>2</sub>) will facilitate the identification of nutrient-efficient cultivars for sustainable agriculture. Here, systematic morphological, anatomical, chemical and gene expression assays performed under low-nitrogen conditions revealed that eCO<sub>2</sub> drove the development of the endodermal barrier with respect to L-/S-shaped lateral roots (LRs) in rice. Next, we applied metabolome and endodermal-cell-specific RNA sequencing and showed that rice adapts to eCO<sub>2</sub> by spatially recruiting diazotrophs via flavonoid secretion in L-shaped LRs. Using the rice Casparian strip mutant Oscasp1-1, we confirmed that reduced lignin deposition selectively recruits the diazotrophic family of Oxalobacteraceae to confer tolerance to low nitrogen availability.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15259\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15259","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Enhanced CO2 Coordinates the Spatial Recruitment of Diazotrophs in Rice Via Root Development.
Understanding the reciprocal interaction between root development and coadapted beneficial microbes in response to elevated CO2 (eCO2) will facilitate the identification of nutrient-efficient cultivars for sustainable agriculture. Here, systematic morphological, anatomical, chemical and gene expression assays performed under low-nitrogen conditions revealed that eCO2 drove the development of the endodermal barrier with respect to L-/S-shaped lateral roots (LRs) in rice. Next, we applied metabolome and endodermal-cell-specific RNA sequencing and showed that rice adapts to eCO2 by spatially recruiting diazotrophs via flavonoid secretion in L-shaped LRs. Using the rice Casparian strip mutant Oscasp1-1, we confirmed that reduced lignin deposition selectively recruits the diazotrophic family of Oxalobacteraceae to confer tolerance to low nitrogen availability.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.