Martin Napierkowski, Tom Schöne, Siva Sankar Murthy Bandaru, Jo Judernatz, Lukas Schulig, Louis Schmidt, Carola Schulzke, Patrick Bednarski
{"title":"六种五硫杂环戊烷对谷胱甘肽稳定性的结构-活性-关系:与生物活性的可能关联。","authors":"Martin Napierkowski, Tom Schöne, Siva Sankar Murthy Bandaru, Jo Judernatz, Lukas Schulig, Louis Schmidt, Carola Schulzke, Patrick Bednarski","doi":"10.1002/cmdc.202400727","DOIUrl":null,"url":null,"abstract":"<p><p>The biological properties of pentathiepins have been intensively studied in recent years. Although the proposed mechanism of action requires activation by intracellular thiols, the dependence of activity on the stability of pentathiepins towards glutathione (GSH) has not been directly investigated. Here, we determined the structure-related stability of six different pentathiepins with four different scaffolds in the presence of GSH by using reversed-phase high-performance liquid chromatography (RP-HPLC) and UV-vis spectroscopy over a wide range of GSH concentrations. We found significant differences in compound stability depending on the pentathiepin scaffold; these differences were reflected in their cytotoxic activities. However, we found no substantial differences in their inhibition of glutathione peroxidase 1 (GPx-1). While the intact pentathiepin ring is necessary for the antiproliferative activity of pentathiepins, the depletion of intracellular GSH content with dl-buthionine-(S,R)-sulfoximine (BSO) led to a significant increase in cytotoxicity of the tested substances. In view of the increased cytotoxicity following artificial GSH depletion, this calls into question the sole role of GSH in the intracellular activation mechanism.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structure-Activity-Relationships of the Stability of six Pentathiepins towards Glutathione: Possible Correlations with Biological Activities.\",\"authors\":\"Martin Napierkowski, Tom Schöne, Siva Sankar Murthy Bandaru, Jo Judernatz, Lukas Schulig, Louis Schmidt, Carola Schulzke, Patrick Bednarski\",\"doi\":\"10.1002/cmdc.202400727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biological properties of pentathiepins have been intensively studied in recent years. Although the proposed mechanism of action requires activation by intracellular thiols, the dependence of activity on the stability of pentathiepins towards glutathione (GSH) has not been directly investigated. Here, we determined the structure-related stability of six different pentathiepins with four different scaffolds in the presence of GSH by using reversed-phase high-performance liquid chromatography (RP-HPLC) and UV-vis spectroscopy over a wide range of GSH concentrations. We found significant differences in compound stability depending on the pentathiepin scaffold; these differences were reflected in their cytotoxic activities. However, we found no substantial differences in their inhibition of glutathione peroxidase 1 (GPx-1). While the intact pentathiepin ring is necessary for the antiproliferative activity of pentathiepins, the depletion of intracellular GSH content with dl-buthionine-(S,R)-sulfoximine (BSO) led to a significant increase in cytotoxicity of the tested substances. In view of the increased cytotoxicity following artificial GSH depletion, this calls into question the sole role of GSH in the intracellular activation mechanism.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400727\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400727","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Structure-Activity-Relationships of the Stability of six Pentathiepins towards Glutathione: Possible Correlations with Biological Activities.
The biological properties of pentathiepins have been intensively studied in recent years. Although the proposed mechanism of action requires activation by intracellular thiols, the dependence of activity on the stability of pentathiepins towards glutathione (GSH) has not been directly investigated. Here, we determined the structure-related stability of six different pentathiepins with four different scaffolds in the presence of GSH by using reversed-phase high-performance liquid chromatography (RP-HPLC) and UV-vis spectroscopy over a wide range of GSH concentrations. We found significant differences in compound stability depending on the pentathiepin scaffold; these differences were reflected in their cytotoxic activities. However, we found no substantial differences in their inhibition of glutathione peroxidase 1 (GPx-1). While the intact pentathiepin ring is necessary for the antiproliferative activity of pentathiepins, the depletion of intracellular GSH content with dl-buthionine-(S,R)-sulfoximine (BSO) led to a significant increase in cytotoxicity of the tested substances. In view of the increased cytotoxicity following artificial GSH depletion, this calls into question the sole role of GSH in the intracellular activation mechanism.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.