{"title":"作为微管蛋白聚合抑制剂的新型吲哚基苯基噻唑-2,4-二氢吡唑酮:多组分合成、细胞毒性评估和硅学研究。","authors":"Bulti Bakchi, Geetanjali Devabattula, Sarvan Maddipatla, Anuradha Singampalli, Dileep Kumar Porna, Srinivas Nanduri, Anamika Sharma, Chandraiah Godugu, Venkata Madhavi Yaddanapudi","doi":"10.1002/cmdc.202400817","DOIUrl":null,"url":null,"abstract":"<p><p>A facile multicomponent synthesis of new indole-based phenylthiazolyl-dihydropyrazolone hybrids, their structural characterization, biological evaluation, and in silico investigations as anticancer agents are reported. Lead molecule 5i of the series showed potent activity against MCF-7 breast cancer cells with an IC50 of 3.92 ± 0.01 µM while showing minimal toxicity to normal human lung cells (IC50 = 69.85 ± 3.95 µM). Further studies show that the compound exhibits antiproliferative activity by inducing apoptosis in MCF-7 cancer cells. The wound healing assay indicated impaired cell migration under the concentration-dependent dosage. The lead molecule 5i also successfully inhibited the tubulin polymerase enzyme with an IC50 of 4.16 ± 0.18 µM. A flow cytometric assay indicated compound 5i induced apoptosis through G0 phase cell cycle arrest. The binding mode and interactions of the compound with the tubulin were predicted by molecular modelling and calculating binding free energies. These findings explain the current series as a new class of microtubule polymerization inhibitors with anticancer activity suitable for developing anticancer agents targeting tubulin.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400817"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Indole-based Phenylthiazolyl-2,4-dihydropyrazolones as Tubulin polymerization inhibitors: Multicomponent synthesis, cytotoxicity evaluation, and in silico studies.\",\"authors\":\"Bulti Bakchi, Geetanjali Devabattula, Sarvan Maddipatla, Anuradha Singampalli, Dileep Kumar Porna, Srinivas Nanduri, Anamika Sharma, Chandraiah Godugu, Venkata Madhavi Yaddanapudi\",\"doi\":\"10.1002/cmdc.202400817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A facile multicomponent synthesis of new indole-based phenylthiazolyl-dihydropyrazolone hybrids, their structural characterization, biological evaluation, and in silico investigations as anticancer agents are reported. Lead molecule 5i of the series showed potent activity against MCF-7 breast cancer cells with an IC50 of 3.92 ± 0.01 µM while showing minimal toxicity to normal human lung cells (IC50 = 69.85 ± 3.95 µM). Further studies show that the compound exhibits antiproliferative activity by inducing apoptosis in MCF-7 cancer cells. The wound healing assay indicated impaired cell migration under the concentration-dependent dosage. The lead molecule 5i also successfully inhibited the tubulin polymerase enzyme with an IC50 of 4.16 ± 0.18 µM. A flow cytometric assay indicated compound 5i induced apoptosis through G0 phase cell cycle arrest. The binding mode and interactions of the compound with the tubulin were predicted by molecular modelling and calculating binding free energies. These findings explain the current series as a new class of microtubule polymerization inhibitors with anticancer activity suitable for developing anticancer agents targeting tubulin.</p>\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\" \",\"pages\":\"e202400817\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400817\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400817","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
New Indole-based Phenylthiazolyl-2,4-dihydropyrazolones as Tubulin polymerization inhibitors: Multicomponent synthesis, cytotoxicity evaluation, and in silico studies.
A facile multicomponent synthesis of new indole-based phenylthiazolyl-dihydropyrazolone hybrids, their structural characterization, biological evaluation, and in silico investigations as anticancer agents are reported. Lead molecule 5i of the series showed potent activity against MCF-7 breast cancer cells with an IC50 of 3.92 ± 0.01 µM while showing minimal toxicity to normal human lung cells (IC50 = 69.85 ± 3.95 µM). Further studies show that the compound exhibits antiproliferative activity by inducing apoptosis in MCF-7 cancer cells. The wound healing assay indicated impaired cell migration under the concentration-dependent dosage. The lead molecule 5i also successfully inhibited the tubulin polymerase enzyme with an IC50 of 4.16 ± 0.18 µM. A flow cytometric assay indicated compound 5i induced apoptosis through G0 phase cell cycle arrest. The binding mode and interactions of the compound with the tubulin were predicted by molecular modelling and calculating binding free energies. These findings explain the current series as a new class of microtubule polymerization inhibitors with anticancer activity suitable for developing anticancer agents targeting tubulin.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.