Ian Will, Emily J Stevens, Thomas Belcher, Kayla C King
{"title":"用微生物群 \"野化 \"动物模型,改变感染期间的免疫和应激基因表达。","authors":"Ian Will, Emily J Stevens, Thomas Belcher, Kayla C King","doi":"10.1111/mec.17586","DOIUrl":null,"url":null,"abstract":"<p><p>The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone. Understanding the host responses to such microbiota-pathogen ecological interactions is key to pinpointing the mechanism underlying severe infection outcomes. We conducted transcriptomic analyses of C. elegans colonised by its native microbiota, S. aureus and both in combination. Correlations between altered collagen gene expression and heightened mortality in co-colonised hosts suggest the microbiota modified host resistance to infection. Furthermore, microbiota colonised hosts showed increased expression of immunity genes and variable expression of stress response genes during infection. Changes in host immunity and stress response could encompass both causes and effects of severe infection outcomes. 'Re-wilding' this model nematode host with its native microbiota indicated that typically commensal microbes can mediate molecular changes in the host that are costly when challenged by a novel emerging pathogen.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17586"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"'Re-Wilding' an Animal Model With Microbiota Shifts Immunity and Stress Gene Expression During Infection.\",\"authors\":\"Ian Will, Emily J Stevens, Thomas Belcher, Kayla C King\",\"doi\":\"10.1111/mec.17586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone. Understanding the host responses to such microbiota-pathogen ecological interactions is key to pinpointing the mechanism underlying severe infection outcomes. We conducted transcriptomic analyses of C. elegans colonised by its native microbiota, S. aureus and both in combination. Correlations between altered collagen gene expression and heightened mortality in co-colonised hosts suggest the microbiota modified host resistance to infection. Furthermore, microbiota colonised hosts showed increased expression of immunity genes and variable expression of stress response genes during infection. Changes in host immunity and stress response could encompass both causes and effects of severe infection outcomes. 'Re-wilding' this model nematode host with its native microbiota indicated that typically commensal microbes can mediate molecular changes in the host that are costly when challenged by a novel emerging pathogen.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17586\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17586\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17586","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
'Re-Wilding' an Animal Model With Microbiota Shifts Immunity and Stress Gene Expression During Infection.
The frequency of emerging disease is growing with ongoing human activity facilitating new host-pathogen interactions. Novel infection outcomes can also be shaped by the host microbiota. Caenorhabditis elegans nematodes experimentally colonised by a wild microbiota community and infected by the widespread animal pathogen, Staphylococcus aureus, have been shown to suffer higher mortality than those infected by the pathogen alone. Understanding the host responses to such microbiota-pathogen ecological interactions is key to pinpointing the mechanism underlying severe infection outcomes. We conducted transcriptomic analyses of C. elegans colonised by its native microbiota, S. aureus and both in combination. Correlations between altered collagen gene expression and heightened mortality in co-colonised hosts suggest the microbiota modified host resistance to infection. Furthermore, microbiota colonised hosts showed increased expression of immunity genes and variable expression of stress response genes during infection. Changes in host immunity and stress response could encompass both causes and effects of severe infection outcomes. 'Re-wilding' this model nematode host with its native microbiota indicated that typically commensal microbes can mediate molecular changes in the host that are costly when challenged by a novel emerging pathogen.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms