{"title":"田间减少外生菌根真菌会对土壤微生物群落产生连带效应,并降低外生菌根共生细菌的丰度。","authors":"Louis Berrios, Kabir G Peay","doi":"10.1111/mec.17585","DOIUrl":null,"url":null,"abstract":"<p><p>Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field-derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus, Burkholderia, in a time-dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced 'Gadgil effect' by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial-EcMF interactions.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17585"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Field Reduction of Ectomycorrhizal Fungi Has Cascading Effects on Soil Microbial Communities and Reduces the Abundance of Ectomycorrhizal Symbiotic Bacteria.\",\"authors\":\"Louis Berrios, Kabir G Peay\",\"doi\":\"10.1111/mec.17585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field-derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus, Burkholderia, in a time-dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced 'Gadgil effect' by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial-EcMF interactions.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17585\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17585\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17585","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Field Reduction of Ectomycorrhizal Fungi Has Cascading Effects on Soil Microbial Communities and Reduces the Abundance of Ectomycorrhizal Symbiotic Bacteria.
Specific interactions between bacteria and ectomycorrhizal fungi (EcMF) can benefit plant health, and saprotrophic soil fungi represent a potentially antagonistic guild to these mutualisms. Yet there is little field-derived experimental evidence showing how the relationship among these three organismal groups manifests across time. To bridge this knowledge gap, we experimentally reduced EcMF in forest soils and monitored both bacterial and fungal soil communities over the course of a year. Our analyses demonstrate that soil trenching shifts the community composition of fungal communities towards a greater abundance of taxa with saprotrophic traits, and this shift is linked to a decrease in both EcMF and a common ectomycorrhizal helper bacterial genus, Burkholderia, in a time-dependent manner. These results not only reveal the temporal nature of a widespread tripartite symbiosis between bacteria, EcMF and a shared host tree, but they also refine our understanding of the commonly referenced 'Gadgil effect' by illustrating the cascading effects of EcMF suppression and implicating soil saprotrophic fungi as potential antagonists on bacterial-EcMF interactions.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms