{"title":"通过有机催化立体选择性阳离子共聚合成可点击的异构聚(乙烯基醚)。","authors":"Yun Liao, Xi Yan, Hui Zhu, Shuai Zhou, Saihu Liao","doi":"10.1002/chem.202403170","DOIUrl":null,"url":null,"abstract":"<p><p>By virtue of the high reliability of click chemistry, polymers with clickable groups provide a useful platform for the rapid synthesis of polymer materials with diverse functionalities and architectures. However, the polymerization of clickable vinyl monomers with a concurrent regulation on tacticity remains underdeveloped. Herein, we report the successful development of a stereoselective cationic copolymerization of C-C triple bond-containing vinyl ethers with simple alkyl vinyl ethers by employing confined Brønsted acid as catalyst, which allows for the synthesis of alkyne-functionalized vinyl ether copolymers with high isotacticity (up to 90% m), controlled molecular weight, and variable content of C-C triple bonds. Further transformation of the pendant clickable alkyne groups via thiol-yne click reactions and copper(I)-catalyzed alkyne-azide cycloaddition reaction enables a modular access to isotactic polymers with various functional groups.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403170"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Clickable Isotactic Poly(vinyl ether)s through Organocatalytic Stereoselective Cationic Copolymerization.\",\"authors\":\"Yun Liao, Xi Yan, Hui Zhu, Shuai Zhou, Saihu Liao\",\"doi\":\"10.1002/chem.202403170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>By virtue of the high reliability of click chemistry, polymers with clickable groups provide a useful platform for the rapid synthesis of polymer materials with diverse functionalities and architectures. However, the polymerization of clickable vinyl monomers with a concurrent regulation on tacticity remains underdeveloped. Herein, we report the successful development of a stereoselective cationic copolymerization of C-C triple bond-containing vinyl ethers with simple alkyl vinyl ethers by employing confined Brønsted acid as catalyst, which allows for the synthesis of alkyne-functionalized vinyl ether copolymers with high isotacticity (up to 90% m), controlled molecular weight, and variable content of C-C triple bonds. Further transformation of the pendant clickable alkyne groups via thiol-yne click reactions and copper(I)-catalyzed alkyne-azide cycloaddition reaction enables a modular access to isotactic polymers with various functional groups.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202403170\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403170\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403170","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of Clickable Isotactic Poly(vinyl ether)s through Organocatalytic Stereoselective Cationic Copolymerization.
By virtue of the high reliability of click chemistry, polymers with clickable groups provide a useful platform for the rapid synthesis of polymer materials with diverse functionalities and architectures. However, the polymerization of clickable vinyl monomers with a concurrent regulation on tacticity remains underdeveloped. Herein, we report the successful development of a stereoselective cationic copolymerization of C-C triple bond-containing vinyl ethers with simple alkyl vinyl ethers by employing confined Brønsted acid as catalyst, which allows for the synthesis of alkyne-functionalized vinyl ether copolymers with high isotacticity (up to 90% m), controlled molecular weight, and variable content of C-C triple bonds. Further transformation of the pendant clickable alkyne groups via thiol-yne click reactions and copper(I)-catalyzed alkyne-azide cycloaddition reaction enables a modular access to isotactic polymers with various functional groups.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.