Juan B Fontanet-Manzaneque, Jari Haeghebaert, Stijn Aesaert, Griet Coussens, Laurens Pauwels, Ana I Caño-Delgado
{"title":"利用三元载体系统和形态发生调节剂高效转化高粱和玉米。","authors":"Juan B Fontanet-Manzaneque, Jari Haeghebaert, Stijn Aesaert, Griet Coussens, Laurens Pauwels, Ana I Caño-Delgado","doi":"10.1111/tpj.17101","DOIUrl":null,"url":null,"abstract":"<p><p>Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient sorghum and maize transformation using a ternary vector system combined with morphogenic regulators.\",\"authors\":\"Juan B Fontanet-Manzaneque, Jari Haeghebaert, Stijn Aesaert, Griet Coussens, Laurens Pauwels, Ana I Caño-Delgado\",\"doi\":\"10.1111/tpj.17101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.</p>\",\"PeriodicalId\":233,\"journal\":{\"name\":\"The Plant Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/tpj.17101\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17101","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Efficient sorghum and maize transformation using a ternary vector system combined with morphogenic regulators.
Sorghum bicolor (sorghum) is a vital C4 monocotyledon crop cultivated in arid regions worldwide, valued for its significance in both human and animal nutrition. Despite its agricultural prominence, sorghum research has been hindered by low transformation frequency. In this study, we examined sorghum transformation using the pVS1-VIR2 ternary vector system for Agrobacterium, combined with the morphogenic genes BABY BOOM and WUSCHEL2 and selection using G418. We optimized Agrobacterium-mediated infection, targeting key parameters such as bacterial optical density, co-cultivation time, and temperature. Additionally, an excision-based transformation system enabled us to generate transgenic plants free of morphogenic regulators. The method yielded remarkable transformation frequencies, reaching up to 164.8% based on total isolated plantlets. The same combination of ternary vector, morphogenic genes and geneticin-based selection also resulted in a marked increase in transformation efficiency of the Zea mays (maize) inbred line B104. The potential for genomic editing using this approach positions it as a valuable tool for the development of sorghum and maize varieties that comply with evolving European regulations. Our work marks a significant stride in sorghum biotechnology and holds promise for addressing global food security challenges in a changing climate.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.