{"title":"通过氧功能化和金纳米粒子沉积对 MXene 表面进行工程化处理,以增强电催化氢气进化反应。","authors":"Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun-Chao Hou, Tong Sun","doi":"10.1002/smtd.202401569","DOIUrl":null,"url":null,"abstract":"<p><p>MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec<sup>-1</sup> at a current density of -10 mA cm<sup>-2</sup> in 0.5 m H<sub>2</sub>SO<sub>4</sub> solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401569"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction.\",\"authors\":\"Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun-Chao Hou, Tong Sun\",\"doi\":\"10.1002/smtd.202401569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec<sup>-1</sup> at a current density of -10 mA cm<sup>-2</sup> in 0.5 m H<sub>2</sub>SO<sub>4</sub> solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401569\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401569\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401569","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction.
MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti3C2Tx MXene (Ti3C2Ox) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti3C2Ox. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec-1 at a current density of -10 mA cm-2 in 0.5 m H2SO4 solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti3C2Ox. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.