通过氧功能化和金纳米粒子沉积对 MXene 表面进行工程化处理,以增强电催化氢气进化反应。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun-Chao Hou, Tong Sun
{"title":"通过氧功能化和金纳米粒子沉积对 MXene 表面进行工程化处理,以增强电催化氢气进化反应。","authors":"Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun-Chao Hou, Tong Sun","doi":"10.1002/smtd.202401569","DOIUrl":null,"url":null,"abstract":"<p><p>MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec<sup>-1</sup> at a current density of -10 mA cm<sup>-2</sup> in 0.5 m H<sub>2</sub>SO<sub>4</sub> solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401569"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction.\",\"authors\":\"Mengrui Li, Xiaoxiao Dong, Qinzhu Li, Yaru Liu, Shuang Cao, Chun-Chao Hou, Tong Sun\",\"doi\":\"10.1002/smtd.202401569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene (Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec<sup>-1</sup> at a current density of -10 mA cm<sup>-2</sup> in 0.5 m H<sub>2</sub>SO<sub>4</sub> solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti<sub>3</sub>C<sub>2</sub>O<sub>x</sub>. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401569\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401569\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401569","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

MXene 是二维过渡金属碳化物和氮化物的一种,在电催化领域具有广阔的应用前景。最大限度地利用其大表面积是开发用于氢进化反应(HER)的高效非贵金属催化剂的关键。本研究合成了氧官能化的 Ti3C2Tx MXene(Ti3C2Ox),并在其上沉积了金纳米颗粒(Au NPs),形成了一种新型复合材料 Au-Ti3C2Ox。通过选择性地去除其他官能团,表面主要保留了 -O 官能团,由于电子金属-支撑相互作用(EMSI),引导电子从 Au NPs 转移到 MXene,从而提高了 MXene 表面的催化活性。此外,Au NPs 和 -O 官能团之间的相互作用进一步提高了整体催化活性,在 0.5 m H2SO4 溶液中,电流密度为 -10 mA cm-2 时,过电位为 62 mV,Tafel 斜率为 40.1 mV dec-1。密度泛函理论计算和分辨率≤150 nm 的扫描电化学显微镜证实,金纳米粒子与 Ti3C2Ox 之间的特异性相互作用提高了催化效率。这项工作提供了一种表面改性策略,可充分利用 MXene 表面并提高 MXene 基催化剂的整体催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering MXene Surface via Oxygen Functionalization and Au Nanoparticle Deposition for Enhanced Electrocatalytic Hydrogen Evolution Reaction.

MXene, a family of 2D transition metal carbides and nitrides, presents promising applications in electrocatalysis. Maximizing its large surface area is key to developing efficient non-noble-metal catalysts for the hydrogen evolution reaction (HER). In this study, oxygen-functionalized Ti3C2Tx MXene (Ti3C2Ox) is synthesized and deposited gold nanoparticles (Au NPs) onto it, forming a novel composite material, Au-Ti3C2Ox. By selectively removing other functional groups, mainly -O functional groups are retained on the surface, directing electron transfer from Au NPs to MXene due to electronic metal-support interaction (EMSI), thereby improving the catalytic activity of the MXene surface. Additionally, the interaction between Au NPs and -O functional groups further enhanced the overall catalytic activity, achieving an overpotential of 62 mV and a Tafel slope of 40.1 mV dec-1 at a current density of -10 mA cm-2 in 0.5 m H2SO4 solution. Density functional theory calculations and scanning electrochemical microscopy with ≤150 nm resolution confirmed the enhanced catalytic efficiency due to the specific interaction between Au NPs and Ti3C2Ox. This work provides a surface modification strategy to fully utilize the MXene surface and enhance the overall catalytic activity of MXene-based catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信