设计和评估作为 RNA 粘合剂的氮杂环。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Claire Fleurisson, Nessrine Graidia, Jihed Azzouz, Audrey Di Giorgio, Marc Gaysinski, Yann Foricher, Maria Duca, Erica Benedetti, Laurent Micouin
{"title":"设计和评估作为 RNA 粘合剂的氮杂环。","authors":"Claire Fleurisson, Nessrine Graidia, Jihed Azzouz, Audrey Di Giorgio, Marc Gaysinski, Yann Foricher, Maria Duca, Erica Benedetti, Laurent Micouin","doi":"10.1002/chem.202403518","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents efficient synthetic pathways for preparing novel azaspirocycles. These methodologies involve functionalizing key bicyclic hydrazines with a substituent on one of their bridgehead carbon atoms. The desired spirocyclic cores were successfully obtained through double reductive amination reactions, intramolecular cyclizations, and cleavages of the N-N bond. The isolated molecules possess unique three-dimensional structures, suggesting potential applications in medicinal chemistry and drug discovery. With the growing interest in targeting nucleic acids as a complementary approach to protein-targeting strategies for developing novel active compounds, we investigated the potential of the synthesized azaspirocycles as RNA binders. As a proof of concept, we highlight the promising activity of some compounds as strong binders of HIV-1 TAR RNA and inhibitors of Tat/TAR interactions.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403518"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Evaluation of Azaspirocycles as RNA binders.\",\"authors\":\"Claire Fleurisson, Nessrine Graidia, Jihed Azzouz, Audrey Di Giorgio, Marc Gaysinski, Yann Foricher, Maria Duca, Erica Benedetti, Laurent Micouin\",\"doi\":\"10.1002/chem.202403518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents efficient synthetic pathways for preparing novel azaspirocycles. These methodologies involve functionalizing key bicyclic hydrazines with a substituent on one of their bridgehead carbon atoms. The desired spirocyclic cores were successfully obtained through double reductive amination reactions, intramolecular cyclizations, and cleavages of the N-N bond. The isolated molecules possess unique three-dimensional structures, suggesting potential applications in medicinal chemistry and drug discovery. With the growing interest in targeting nucleic acids as a complementary approach to protein-targeting strategies for developing novel active compounds, we investigated the potential of the synthesized azaspirocycles as RNA binders. As a proof of concept, we highlight the promising activity of some compounds as strong binders of HIV-1 TAR RNA and inhibitors of Tat/TAR interactions.</p>\",\"PeriodicalId\":144,\"journal\":{\"name\":\"Chemistry - A European Journal\",\"volume\":\" \",\"pages\":\"e202403518\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - A European Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/chem.202403518\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403518","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了制备新型氮杂螺环的高效合成途径。这些方法涉及在关键的双环肼的桥头碳原子上用取代基进行官能化。通过双还原胺化反应、分子内环化反应和 N-N 键裂解反应,成功地获得了所需的螺环核心。分离出的分子具有独特的三维结构,有望应用于药物化学和药物发现领域。随着人们对靶向核酸作为蛋白质靶向策略的补充方法以开发新型活性化合物的兴趣与日俱增,我们研究了合成的氮杂环作为 RNA 结合剂的潜力。作为概念验证,我们强调了一些化合物作为 HIV-1 TAR RNA 的强结合剂和 Tat/TAR 相互作用抑制剂所具有的良好活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Evaluation of Azaspirocycles as RNA binders.

This study presents efficient synthetic pathways for preparing novel azaspirocycles. These methodologies involve functionalizing key bicyclic hydrazines with a substituent on one of their bridgehead carbon atoms. The desired spirocyclic cores were successfully obtained through double reductive amination reactions, intramolecular cyclizations, and cleavages of the N-N bond. The isolated molecules possess unique three-dimensional structures, suggesting potential applications in medicinal chemistry and drug discovery. With the growing interest in targeting nucleic acids as a complementary approach to protein-targeting strategies for developing novel active compounds, we investigated the potential of the synthesized azaspirocycles as RNA binders. As a proof of concept, we highlight the promising activity of some compounds as strong binders of HIV-1 TAR RNA and inhibitors of Tat/TAR interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信