Junzhen Ren, Shaoqing Zhang, Huixue Li, Jianqiu Wang, Lijiao Ma, Zhihao Chen, Tao Wang, Tao Zhang, Jianhui Hou
{"title":"基于 TVT 的新构件,具有增强的 π 电子脱焦功能,可实现高效的非熔融光伏受体。","authors":"Junzhen Ren, Shaoqing Zhang, Huixue Li, Jianqiu Wang, Lijiao Ma, Zhihao Chen, Tao Wang, Tao Zhang, Jianhui Hou","doi":"10.1002/smtd.202401511","DOIUrl":null,"url":null,"abstract":"<p><p>To address the high-cost issue that impedes the large-scale fabrication and industrialization of organic solar cells (OSCs), it is crucial to design low-cost photovoltaic materials with simplified synthesis procedures. In this study, a novel fully non-fused acceptor, ATVT-BO, featuring a triisopropylbenzene-substituted (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit as the central core is designed and synthesized. A control acceptor, A4T-BO, with the same alkyl chains but a bithiophene central core, is also synthesized for comparison. Theoretical calculations and practical measurements reveal that compared to A4T-BO, the insertion of an ethylene bond in ATVT-BO enhances the molecular planarity and reduces the aromaticity, leading to enhanced π-electron delocalization and thus improved electron mobility and a red-shifted optical absorption spectrum. The 3D molecular packing mode of ATVT-BO, characterized by tight intermolecular interactions, also promotes efficient charge transport in OSCs. Consequently, when paired with the low-cost polymer PTVT-T, featuring an ester-substituted TVT structure, as the photoactive layer, the PTVT-T:ATVT-BO-based device achieves a remarkable power conversion efficiency of 14.8%, distinctly higher than that of PTVT-T:A4T-BO-based cell. The result highlights the significant potential of TVT units in creating both low-cost polymer donors and fully non-fused acceptors, which opens up new possibilities for designing low-cost photoactive materials in OSCs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401511"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TVT-Based New Building Block with Enhanced π-Electron Delocalization for Efficient Non-Fused Photovoltaic Acceptor.\",\"authors\":\"Junzhen Ren, Shaoqing Zhang, Huixue Li, Jianqiu Wang, Lijiao Ma, Zhihao Chen, Tao Wang, Tao Zhang, Jianhui Hou\",\"doi\":\"10.1002/smtd.202401511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the high-cost issue that impedes the large-scale fabrication and industrialization of organic solar cells (OSCs), it is crucial to design low-cost photovoltaic materials with simplified synthesis procedures. In this study, a novel fully non-fused acceptor, ATVT-BO, featuring a triisopropylbenzene-substituted (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit as the central core is designed and synthesized. A control acceptor, A4T-BO, with the same alkyl chains but a bithiophene central core, is also synthesized for comparison. Theoretical calculations and practical measurements reveal that compared to A4T-BO, the insertion of an ethylene bond in ATVT-BO enhances the molecular planarity and reduces the aromaticity, leading to enhanced π-electron delocalization and thus improved electron mobility and a red-shifted optical absorption spectrum. The 3D molecular packing mode of ATVT-BO, characterized by tight intermolecular interactions, also promotes efficient charge transport in OSCs. Consequently, when paired with the low-cost polymer PTVT-T, featuring an ester-substituted TVT structure, as the photoactive layer, the PTVT-T:ATVT-BO-based device achieves a remarkable power conversion efficiency of 14.8%, distinctly higher than that of PTVT-T:A4T-BO-based cell. The result highlights the significant potential of TVT units in creating both low-cost polymer donors and fully non-fused acceptors, which opens up new possibilities for designing low-cost photoactive materials in OSCs.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e2401511\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202401511\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401511","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
TVT-Based New Building Block with Enhanced π-Electron Delocalization for Efficient Non-Fused Photovoltaic Acceptor.
To address the high-cost issue that impedes the large-scale fabrication and industrialization of organic solar cells (OSCs), it is crucial to design low-cost photovoltaic materials with simplified synthesis procedures. In this study, a novel fully non-fused acceptor, ATVT-BO, featuring a triisopropylbenzene-substituted (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit as the central core is designed and synthesized. A control acceptor, A4T-BO, with the same alkyl chains but a bithiophene central core, is also synthesized for comparison. Theoretical calculations and practical measurements reveal that compared to A4T-BO, the insertion of an ethylene bond in ATVT-BO enhances the molecular planarity and reduces the aromaticity, leading to enhanced π-electron delocalization and thus improved electron mobility and a red-shifted optical absorption spectrum. The 3D molecular packing mode of ATVT-BO, characterized by tight intermolecular interactions, also promotes efficient charge transport in OSCs. Consequently, when paired with the low-cost polymer PTVT-T, featuring an ester-substituted TVT structure, as the photoactive layer, the PTVT-T:ATVT-BO-based device achieves a remarkable power conversion efficiency of 14.8%, distinctly higher than that of PTVT-T:A4T-BO-based cell. The result highlights the significant potential of TVT units in creating both low-cost polymer donors and fully non-fused acceptors, which opens up new possibilities for designing low-cost photoactive materials in OSCs.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.