海绵中的古细胞:命运复杂的简单细胞。

IF 11 1区 生物学 Q1 BIOLOGY
Alexander Ereskovsky, Nikolai P Melnikov, Andrey Lavrov
{"title":"海绵中的古细胞:命运复杂的简单细胞。","authors":"Alexander Ereskovsky, Nikolai P Melnikov, Andrey Lavrov","doi":"10.1111/brv.13162","DOIUrl":null,"url":null,"abstract":"<p><p>Archaeocytes are considered a key cell type in sponges (Porifera). They are believed to be multifunctional cells performing various functions, from nutrient digestion to acting as adult stem cells (ASCs). Thus, archaeocytes are mentioned in discussions on various aspects of sponge biology. As presumed ASCs of an early-diverged animal taxon, archaeocytes are of great fundamental interest for further progress in understanding tissue functioning in metazoans. However, the term 'archaeocyte' is rather ambiguous in its usage and understanding, and debates surrounding archaeocytes have persisted for over a century, reflecting the ongoing complexity of understanding their nature. This article presents a comprehensive revision of the archaeocyte concept, including both its historical development and biological features (i.e. taxonomic distribution, characteristics, and functions). The term 'archaeocyte' and its central aspects were introduced as early as the end of the 19th century based on data mainly from demosponges. Remarkably, despite the general lack of comparative and non-histological data, these early studies already regarded archaeocytes as the ASCs of sponges. These early views were readily inherited by subsequent studies, often without proper verification, shaping views on many aspects of sponge biology for more than a century. Taking into account all available data, we propose considering the archaeocytes as a cell type specific to the class Demospongiae. Clear homologues of archaeocytes are absent in other sponge classes. In demosponges, the term 'archaeocytes' refers to mesohyl cells that have an amoeboid shape, nucleolated nuclei, and non-specific inclusions in the cytoplasm. The absence of specific traits makes the archaeocytes a loosely defined and probably heterogeneous cell population, rendering the exhaustive characterisation of the 'true' archaeocyte population impossible. At the same time, the molecular characterisation of archaeocytes is only beginning to develop. Stemness and almost unlimited potency have always been at the core of the traditional archaeocyte concept. However, currently, the most consistent data on archaeocyte stem cell function come only from developing gemmules of freshwater sponges. For tissues of adult demosponges, the data favour a two-component stem cell system, in which archaeocytes may cooperate with another stem cell population, choanocytes. Simultaneously, cells with archaeocyte morphology function as macrophages in demosponges, participating in the food digestion cycle and immune defence. Such cells should be denoted with the more neutral term 'nucleolar amoebocytes', as the term 'archaeocyte' not only describes the morphology of a cell but also introduces the proposition of its stem nature. Thus, the future usage of the term 'archaeocyte' should be limited to cases where a cell is shown or at least presumed to be a stem cell.</p>","PeriodicalId":133,"journal":{"name":"Biological Reviews","volume":" ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Archaeocytes in sponges: simple cells of complicated fate.\",\"authors\":\"Alexander Ereskovsky, Nikolai P Melnikov, Andrey Lavrov\",\"doi\":\"10.1111/brv.13162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Archaeocytes are considered a key cell type in sponges (Porifera). They are believed to be multifunctional cells performing various functions, from nutrient digestion to acting as adult stem cells (ASCs). Thus, archaeocytes are mentioned in discussions on various aspects of sponge biology. As presumed ASCs of an early-diverged animal taxon, archaeocytes are of great fundamental interest for further progress in understanding tissue functioning in metazoans. However, the term 'archaeocyte' is rather ambiguous in its usage and understanding, and debates surrounding archaeocytes have persisted for over a century, reflecting the ongoing complexity of understanding their nature. This article presents a comprehensive revision of the archaeocyte concept, including both its historical development and biological features (i.e. taxonomic distribution, characteristics, and functions). The term 'archaeocyte' and its central aspects were introduced as early as the end of the 19th century based on data mainly from demosponges. Remarkably, despite the general lack of comparative and non-histological data, these early studies already regarded archaeocytes as the ASCs of sponges. These early views were readily inherited by subsequent studies, often without proper verification, shaping views on many aspects of sponge biology for more than a century. Taking into account all available data, we propose considering the archaeocytes as a cell type specific to the class Demospongiae. Clear homologues of archaeocytes are absent in other sponge classes. In demosponges, the term 'archaeocytes' refers to mesohyl cells that have an amoeboid shape, nucleolated nuclei, and non-specific inclusions in the cytoplasm. The absence of specific traits makes the archaeocytes a loosely defined and probably heterogeneous cell population, rendering the exhaustive characterisation of the 'true' archaeocyte population impossible. At the same time, the molecular characterisation of archaeocytes is only beginning to develop. Stemness and almost unlimited potency have always been at the core of the traditional archaeocyte concept. However, currently, the most consistent data on archaeocyte stem cell function come only from developing gemmules of freshwater sponges. For tissues of adult demosponges, the data favour a two-component stem cell system, in which archaeocytes may cooperate with another stem cell population, choanocytes. Simultaneously, cells with archaeocyte morphology function as macrophages in demosponges, participating in the food digestion cycle and immune defence. Such cells should be denoted with the more neutral term 'nucleolar amoebocytes', as the term 'archaeocyte' not only describes the morphology of a cell but also introduces the proposition of its stem nature. Thus, the future usage of the term 'archaeocyte' should be limited to cases where a cell is shown or at least presumed to be a stem cell.</p>\",\"PeriodicalId\":133,\"journal\":{\"name\":\"Biological Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/brv.13162\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/brv.13162","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

古细胞被认为是海绵(多孔动物)中的一种关键细胞类型。它们被认为是多功能细胞,具有从营养消化到充当成体干细胞(ASCs)等多种功能。因此,在有关海绵生物学各个方面的讨论中都提到了古细胞。作为推测的早期分化动物类群的成体干细胞,古细胞对于进一步了解元古动物的组织功能具有重要的基础意义。然而,"古细胞 "一词在使用和理解上相当模糊,围绕古细胞的争论已持续了一个多世纪,反映了人们对其本质认识的复杂性。本文对考古细胞概念进行了全面修订,包括其历史发展和生物学特征(即分类学分布、特征和功能)。早在 19 世纪末,"古细胞 "一词及其核心内容就已根据主要来自底栖生物的数据被提出。值得注意的是,尽管普遍缺乏比较数据和非生物学数据,但这些早期研究已经将古细胞视为海绵的ASCs。这些早期观点很容易被后来的研究继承下来,而且往往没有经过适当的验证,一个多世纪以来,这些观点影响了海绵生物学的许多方面。考虑到所有可用数据,我们建议将古细胞视为去骨海绵类特有的细胞类型。其他海绵类中没有明显的古细胞同源物。在底栖海绵中,"古细胞 "一词指的是具有变形体形状、有核细胞核以及胞质中有非特异性内含物的中叶细胞。由于缺乏特异性,古细 胞的定义较为松散,而且很可能是一个异质细胞群,因此不可能对 "真正的 "古细 胞群进行详尽的特征描述。同时,考古细胞的分子特征描述也才刚刚开始。干性和几乎无限的潜能一直是传统考古细胞概念的核心。然而,目前有关古细胞干细胞功能的最一致数据仅来自淡水海绵的发育宝石。就成体海绵组织而言,数据支持双组分干细胞系统,其中考古细胞可能与另一个干细胞群--鹅掌细胞--合作。同时,具有古细胞形态的细胞在底栖海绵中具有巨噬细胞的功能,参与食物消化循环和免疫防御。这类细胞应该用更中性的术语 "核阿米巴细胞 "来表示,因为 "古细胞 "一词不仅描述了细胞的形态,还提出了其干细胞性质的命题。因此,"古细胞 "一词今后的使用应仅限于细胞被证明或至少被推定为干细胞的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Archaeocytes in sponges: simple cells of complicated fate.

Archaeocytes are considered a key cell type in sponges (Porifera). They are believed to be multifunctional cells performing various functions, from nutrient digestion to acting as adult stem cells (ASCs). Thus, archaeocytes are mentioned in discussions on various aspects of sponge biology. As presumed ASCs of an early-diverged animal taxon, archaeocytes are of great fundamental interest for further progress in understanding tissue functioning in metazoans. However, the term 'archaeocyte' is rather ambiguous in its usage and understanding, and debates surrounding archaeocytes have persisted for over a century, reflecting the ongoing complexity of understanding their nature. This article presents a comprehensive revision of the archaeocyte concept, including both its historical development and biological features (i.e. taxonomic distribution, characteristics, and functions). The term 'archaeocyte' and its central aspects were introduced as early as the end of the 19th century based on data mainly from demosponges. Remarkably, despite the general lack of comparative and non-histological data, these early studies already regarded archaeocytes as the ASCs of sponges. These early views were readily inherited by subsequent studies, often without proper verification, shaping views on many aspects of sponge biology for more than a century. Taking into account all available data, we propose considering the archaeocytes as a cell type specific to the class Demospongiae. Clear homologues of archaeocytes are absent in other sponge classes. In demosponges, the term 'archaeocytes' refers to mesohyl cells that have an amoeboid shape, nucleolated nuclei, and non-specific inclusions in the cytoplasm. The absence of specific traits makes the archaeocytes a loosely defined and probably heterogeneous cell population, rendering the exhaustive characterisation of the 'true' archaeocyte population impossible. At the same time, the molecular characterisation of archaeocytes is only beginning to develop. Stemness and almost unlimited potency have always been at the core of the traditional archaeocyte concept. However, currently, the most consistent data on archaeocyte stem cell function come only from developing gemmules of freshwater sponges. For tissues of adult demosponges, the data favour a two-component stem cell system, in which archaeocytes may cooperate with another stem cell population, choanocytes. Simultaneously, cells with archaeocyte morphology function as macrophages in demosponges, participating in the food digestion cycle and immune defence. Such cells should be denoted with the more neutral term 'nucleolar amoebocytes', as the term 'archaeocyte' not only describes the morphology of a cell but also introduces the proposition of its stem nature. Thus, the future usage of the term 'archaeocyte' should be limited to cases where a cell is shown or at least presumed to be a stem cell.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Reviews
Biological Reviews 生物-生物学
CiteScore
21.30
自引率
2.00%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Biological Reviews is a scientific journal that covers a wide range of topics in the biological sciences. It publishes several review articles per issue, which are aimed at both non-specialist biologists and researchers in the field. The articles are scholarly and include extensive bibliographies. Authors are instructed to be aware of the diverse readership and write their articles accordingly. The reviews in Biological Reviews serve as comprehensive introductions to specific fields, presenting the current state of the art and highlighting gaps in knowledge. Each article can be up to 20,000 words long and includes an abstract, a thorough introduction, and a statement of conclusions. The journal focuses on publishing synthetic reviews, which are based on existing literature and address important biological questions. These reviews are interesting to a broad readership and are timely, often related to fast-moving fields or new discoveries. A key aspect of a synthetic review is that it goes beyond simply compiling information and instead analyzes the collected data to create a new theoretical or conceptual framework that can significantly impact the field. Biological Reviews is abstracted and indexed in various databases, including Abstracts on Hygiene & Communicable Diseases, Academic Search, AgBiotech News & Information, AgBiotechNet, AGRICOLA Database, GeoRef, Global Health, SCOPUS, Weed Abstracts, and Reaction Citation Index, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信