关于磷化氢催化环丙基酮开环反应机理的 DFT 研究。

IF 2.9 3区 化学 Q1 CHEMISTRY, ORGANIC
Xiaohan Yu, Yang Wang
{"title":"关于磷化氢催化环丙基酮开环反应机理的 DFT 研究。","authors":"Xiaohan Yu, Yang Wang","doi":"10.1039/d4ob01459f","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, the mechanism, origin of chemoselectivity, and substituent effects of the phosphine-catalyzed ring-opening reaction of cyclopropyl ketone have been investigated using the DFT method. Multiple pathways, including the formation of hydrofluorenone, the Cloke-Wilson product, and cyclopenta-fused product, were studied and compared. The computational results show that the pathway for the formation of hydrofluorenone is the most favorable one, which involves four processes: nucleophilic substitution to open the three-membered ring, an intramolecular Michael addition for the formation of an enolate intermediate, an intramolecular [1,5]-proton transfer to give ylide, and an intramolecular Wittig reaction to deliver the final product. For disclosing the origin of chemoselectivity, structural analysis and local reactivity index analysis were performed. Moreover, substituent effects were also considered using QTAIM analysis. The current study would provide useful insights for understanding phosphine-catalyzed chemoselective reactions.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT study on the mechanism of phosphine-catalyzed ring-opening reaction of cyclopropyl ketones.\",\"authors\":\"Xiaohan Yu, Yang Wang\",\"doi\":\"10.1039/d4ob01459f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, the mechanism, origin of chemoselectivity, and substituent effects of the phosphine-catalyzed ring-opening reaction of cyclopropyl ketone have been investigated using the DFT method. Multiple pathways, including the formation of hydrofluorenone, the Cloke-Wilson product, and cyclopenta-fused product, were studied and compared. The computational results show that the pathway for the formation of hydrofluorenone is the most favorable one, which involves four processes: nucleophilic substitution to open the three-membered ring, an intramolecular Michael addition for the formation of an enolate intermediate, an intramolecular [1,5]-proton transfer to give ylide, and an intramolecular Wittig reaction to deliver the final product. For disclosing the origin of chemoselectivity, structural analysis and local reactivity index analysis were performed. Moreover, substituent effects were also considered using QTAIM analysis. The current study would provide useful insights for understanding phosphine-catalyzed chemoselective reactions.</p>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ob01459f\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4ob01459f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用 DFT 方法研究了膦催化环丙基酮开环反应的机理、化学选择性的来源和取代基的影响。研究并比较了多种途径,包括氢芴酮、Cloke-Wilson 产物和环五融合产物的形成。计算结果表明,氢芴酮的形成途径是最有利的途径,其中涉及四个过程:亲核取代打开三元环、分子内迈克尔加成形成烯醇中间体、分子内[1,5]-质子转移生成酰亚胺,以及分子内维蒂希反应生成最终产物。为了揭示化学选择性的来源,研究人员进行了结构分析和局部反应性指数分析。此外,还利用 QTAIM 分析考虑了取代基的影响。目前的研究将为理解膦催化的化学选择性反应提供有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DFT study on the mechanism of phosphine-catalyzed ring-opening reaction of cyclopropyl ketones.

In the present study, the mechanism, origin of chemoselectivity, and substituent effects of the phosphine-catalyzed ring-opening reaction of cyclopropyl ketone have been investigated using the DFT method. Multiple pathways, including the formation of hydrofluorenone, the Cloke-Wilson product, and cyclopenta-fused product, were studied and compared. The computational results show that the pathway for the formation of hydrofluorenone is the most favorable one, which involves four processes: nucleophilic substitution to open the three-membered ring, an intramolecular Michael addition for the formation of an enolate intermediate, an intramolecular [1,5]-proton transfer to give ylide, and an intramolecular Wittig reaction to deliver the final product. For disclosing the origin of chemoselectivity, structural analysis and local reactivity index analysis were performed. Moreover, substituent effects were also considered using QTAIM analysis. The current study would provide useful insights for understanding phosphine-catalyzed chemoselective reactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organic & Biomolecular Chemistry
Organic & Biomolecular Chemistry 化学-有机化学
CiteScore
5.50
自引率
9.40%
发文量
1056
审稿时长
1.3 months
期刊介绍: The international home of synthetic, physical and biomolecular organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信