开拓作为缺陷钝化剂的非热等离子体:常温金属卤化物包晶合成的新前沿。

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Milad Mahiny, Hossein Lotfi, Maryam Beigmohammadi, Mehdi Pooriraj, Maryam Heydari, Alireza Shirzad, Hamidreza Mahfouzi, Mohammad Khaja Nazeeruddin, Abd Rashid Bin Mohd Yusoff, Hossein Movla
{"title":"开拓作为缺陷钝化剂的非热等离子体:常温金属卤化物包晶合成的新前沿。","authors":"Milad Mahiny, Hossein Lotfi, Maryam Beigmohammadi, Mehdi Pooriraj, Maryam Heydari, Alireza Shirzad, Hamidreza Mahfouzi, Mohammad Khaja Nazeeruddin, Abd Rashid Bin Mohd Yusoff, Hossein Movla","doi":"10.1039/d4mh01430h","DOIUrl":null,"url":null,"abstract":"<p><p>Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH<sub>4</sub>PbI<sub>3</sub> into a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. <i>In situ</i> Rietveld refinement analysis reveals minimal PbI<sub>2</sub> formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI<sub>3</sub> nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pioneering non-thermal plasma as a defect passivator: a new Frontier in ambient metal halide perovskite synthesis.\",\"authors\":\"Milad Mahiny, Hossein Lotfi, Maryam Beigmohammadi, Mehdi Pooriraj, Maryam Heydari, Alireza Shirzad, Hamidreza Mahfouzi, Mohammad Khaja Nazeeruddin, Abd Rashid Bin Mohd Yusoff, Hossein Movla\",\"doi\":\"10.1039/d4mh01430h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH<sub>4</sub>PbI<sub>3</sub> into a CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. <i>In situ</i> Rietveld refinement analysis reveals minimal PbI<sub>2</sub> formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI<sub>3</sub> nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01430h\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01430h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

日益增长的能源需求使得具有成本效益和高性能的过氧化物太阳能电池(PSCs)成为人们的理想选择。然而,由于缺陷的形成和不稳定性,它们的商业应用受到了限制。钝化技术有助于增强其有利特性。在此,我们提出了一种开创性的技术,利用非热等离子体(NTP)合成技术钝化过氧化物晶体的固有缺陷并优化其能级。AC-NTP 利用离子电荷和均匀电场有效中和缺陷诱导的电荷阱,起到场效应钝化剂的作用。这种方法不仅能缓解能量缺陷,还能通过自脱气机制促进 NH4PbI3 转变为 CH3NH3PbI3 包晶。通过 X 射线衍射、紫外-可见光谱和扫描电子显微镜观察,使用这种方法合成的包光体在性能上有显著的进步。这些改进包括晶体质量的提高、光学特性的改善以及纳米粒子尺寸的精确控制(平均尺寸为 54 纳米)。原位 Rietveld 精炼分析表明,PbI2 的形成极少,因此碘化铅的反转缺陷也较少。因此,用交流-NTP 制造的 PSC 显示出 15.25% 的 PCE,明显高于用直流电制造的 PSC(13.29%),这表明在环境条件下超过 160 小时的稳定性有所提高。磁滞评估、SCLC 分析和肖克利二极管建模表明,我们的 PSC 具有低缺陷密度和高界面质量。此外,还应用 DFT 间接分析了 NTP 对包晶石的影响,重点研究了量子约束效应和晶格排列对 MAPbI3 纳米粒子光电特性的影响。研究结果证实,NTP 合成会产生更理想的 PSCs,从而显著改善光伏性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pioneering non-thermal plasma as a defect passivator: a new Frontier in ambient metal halide perovskite synthesis.

Growing energy demands make cost-effective, high-performance perovskite solar cells (PSCs) desirable. However, their commercial applications are limited due to defect formation and instability. Passivation technologies help enhance their favorable traits. Herein, we propose a pioneering technique utilizing non-thermal plasma (NTP) synthesis for passivating inherent defects and optimizing the energy levels of perovskites. AC-NTP utilizes ionic charges and uniform electric fields to effectively neutralize defect-induced charge traps, acting as a field-effect passivator. This approach not only mitigates energetic defects, but also facilitates the transformation of NH4PbI3 into a CH3NH3PbI3 perovskite through a self-degassing mechanism. The perovskites synthesized using this method demonstrate notable advancements in their properties, as evidenced by X-ray diffraction, UV-vis spectroscopy, and scanning electron microscopy. These improvements include enhanced crystalline quality, superior optical characteristics, and precise nanoparticle size control, with an average size of 54 nm. In situ Rietveld refinement analysis reveals minimal PbI2 formation, resulting in fewer lead iodide inversion defects. Accordingly, the PSC fabricated by AC-NTP shows a PCE of 15.25%, significantly higher than that fabricated by the DC one (13.29%), which demonstrates improved stability under ambient conditions for over 160 hours. Hysteresis assessment, SCLC analysis, and Shockley diode modeling show our PSCs' low defect densities and high interface quality. Moreover, DFT was applied to indirectly analyze the effects of NTP on the perovskites, focusing on quantum confinement effects and lattice arrangement's influence on the optoelectronic characteristics of MAPbI3 nanoparticles. The findings confirm that NTP synthesis leads to more optimal PSCs, showing notable improvement in photovoltaics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信