Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu
{"title":"具有快速等时反应的类肌肉水凝胶及其在软机器人中的应用:小视角。","authors":"Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu","doi":"10.1039/d4mh01187b","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview.\",\"authors\":\"Hui Ying Bai, Qing Li Zhu, Han Lei Cheng, Xin Ling Wen, Zhi Jian Wang, Qiang Zheng, Zi Liang Wu\",\"doi\":\"10.1039/d4mh01187b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01187b\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01187b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Muscle-like hydrogels with fast isochoric responses and their applications as soft robots: a minireview.
Hydrogels with abundant water and responsiveness to external stimuli have emerged as promising candidates for artificial muscles and garnered significant interest for applications as soft actuators and robots. However, most hydrogels possess amorphous structures and exhibit slow, isotropic responses to external stimuli. These features are far inferior to real muscles, which have ordered structures and endow living organisms with programmable deformations and motions through fast, anisotropic responses in complex environments. In recent years, this issue has been addressed by a conceptual new strategy to develop muscle-like hydrogels with highly oriented nanosheets. These hydrogels exhibit fast, isochoric responses based on temperature-mediated electrostatic repulsion between charged nanosheets rather than water diffusion, which significantly advances the development of soft actuators and robots. This minireview summarizes the recent progress in muscle-like hydrogels and their applications as soft actuators and robots. We first introduce the synthesis of muscle-like hydrogels with monodomain structures and the unique mechanism for rapid and isochoric deformations. Then, the developments of hydrogels with complex ordered structures and hydrogel-based soft robots are discussed. The morphing mechanisms and motion kinematics of the hydrogel actuators and robots are highlighted. Finally, concluding remarks are given to discuss future opportunities and challenges in this field.