Jiawen Li, Guidong Gong, Yue Zhang, Yanjiang Zheng, Yunxiang He, Mei Chen, Xianglian He, Xiaolan Zheng, Xue Gong, Lei Liu, Kaiyu Zhou, Zongmin Zhao, C Wyatt Shields Iv, Yimin Hua, Yifei Li, Junling Guo
{"title":"用于靶向心脏修复和免疫调节的多酚纳米工程单核细胞生物混合物","authors":"Jiawen Li, Guidong Gong, Yue Zhang, Yanjiang Zheng, Yunxiang He, Mei Chen, Xianglian He, Xiaolan Zheng, Xue Gong, Lei Liu, Kaiyu Zhou, Zongmin Zhao, C Wyatt Shields Iv, Yimin Hua, Yifei Li, Junling Guo","doi":"10.1002/adhm.202403595","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403595"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation.\",\"authors\":\"Jiawen Li, Guidong Gong, Yue Zhang, Yanjiang Zheng, Yunxiang He, Mei Chen, Xianglian He, Xiaolan Zheng, Xue Gong, Lei Liu, Kaiyu Zhou, Zongmin Zhao, C Wyatt Shields Iv, Yimin Hua, Yifei Li, Junling Guo\",\"doi\":\"10.1002/adhm.202403595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2403595\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202403595\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403595","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Polyphenol-Nanoengineered Monocyte Biohybrids for Targeted Cardiac Repair and Immunomodulation.
Myocardial infarction is one of the leading cause of cardiovascular death worldwide. Invasive interventional procedures and medications are applied to attenuate the attacks associated with ischemic heart disease by reestablishing blood flow and restoring oxygen supply. However, the overactivation of inflammatory responses and unsatisfactory drug delivery efficiency in the infarcted regions prohibit functional improvement. Here, a nanoengineered monocyte (MO)-based biohybrid system, referred to as CTAs @MOs, for the heart-targeted delivery of combinational therapeutic agents (CTAs) containing anti-inflammatory IL-10 and cardiomyogenic miR-19a to overcome the limitation of malperfusion within the infarcted myocardium through a polyphenol-mediated interfacial assembly, is reported. Systemic administration of CTAs@MOs bypasses extensive thoracotomy and intramyocardial administration risks, leading to infarcted heart-specific accumulation and sustained release of therapeutic agents, enabling immunomodulation of the proinflammatory microenvironment and promoting cardiomyocyte proliferation in sequence. Moreover, CTAs@MOs, which serve as a cellular biohybrid-based therapy, significantly improve cardiac function as evidenced by enhanced ejection fractions, increased fractional shortening, and diminished infarct sizes. This polyphenol nanoengineered biohybrid system represents a general and potent platform for the efficient treatment of cardiovascular disorders.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.