Jihyun Kim, Seol-Ha Jeong, Brendan Craig Thibault, Javier Alejandro Lozano Soto, Hiroyuki Tetsuka, Surya Varchasvi Devaraj, Estefania Riestra, Yeongseok Jang, Jeong Wook Seo, Rafael Alejandro Cornejo Rodríguez, Lucia L Huang, Yuhan Lee, Ioana Preda, Sameer Sonkusale, Lance Fiondella, Jungmok Seo, Lorenzo Pirrami, Su Ryon Shin
{"title":"通过计算机视觉引导系统辅助自主机械臂打印实现大规模超快无线软生物电子器件制造,促进个性化伤口愈合。","authors":"Jihyun Kim, Seol-Ha Jeong, Brendan Craig Thibault, Javier Alejandro Lozano Soto, Hiroyuki Tetsuka, Surya Varchasvi Devaraj, Estefania Riestra, Yeongseok Jang, Jeong Wook Seo, Rafael Alejandro Cornejo Rodríguez, Lucia L Huang, Yuhan Lee, Ioana Preda, Sameer Sonkusale, Lance Fiondella, Jungmok Seo, Lorenzo Pirrami, Su Ryon Shin","doi":"10.1002/adhm.202401735","DOIUrl":null,"url":null,"abstract":"<p><p>A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds. The size of electrodes and the geometries of power-receiving coil are essential components of the CARE and are determined by a MATLAB simulation, ensuring efficient wireless power transfer. Three heterogeneous inks possessing different rheological behaviors can be extruded and printed sequentially on the flexible substrates, supporting fast manufacturing of large customized bioelectronic patches. CARE can stimulate wounds up to 10 mm in depth with an electric field strength of 88.8 mV mm<sup>-1</sup>. In vitro studies reveal the ability to accelerate cell migration by a factor of 1.6 and 1.9 for human dermal fibroblasts and human umbilical vein endothelial cells, respectively. This study highlights the potential of CARE as a clinical wound therapy method to accelerate healing.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401735"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large Scale Ultrafast Manufacturing of Wireless Soft Bioelectronics Enabled by Autonomous Robot Arm Printing Assisted by a Computer Vision-Enabled Guidance System for Personalized Wound Healing.\",\"authors\":\"Jihyun Kim, Seol-Ha Jeong, Brendan Craig Thibault, Javier Alejandro Lozano Soto, Hiroyuki Tetsuka, Surya Varchasvi Devaraj, Estefania Riestra, Yeongseok Jang, Jeong Wook Seo, Rafael Alejandro Cornejo Rodríguez, Lucia L Huang, Yuhan Lee, Ioana Preda, Sameer Sonkusale, Lance Fiondella, Jungmok Seo, Lorenzo Pirrami, Su Ryon Shin\",\"doi\":\"10.1002/adhm.202401735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds. The size of electrodes and the geometries of power-receiving coil are essential components of the CARE and are determined by a MATLAB simulation, ensuring efficient wireless power transfer. Three heterogeneous inks possessing different rheological behaviors can be extruded and printed sequentially on the flexible substrates, supporting fast manufacturing of large customized bioelectronic patches. CARE can stimulate wounds up to 10 mm in depth with an electric field strength of 88.8 mV mm<sup>-1</sup>. In vitro studies reveal the ability to accelerate cell migration by a factor of 1.6 and 1.9 for human dermal fibroblasts and human umbilical vein endothelial cells, respectively. This study highlights the potential of CARE as a clinical wound therapy method to accelerate healing.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2401735\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202401735\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202401735","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了一种用于高级电场组织再生的定制伤口贴片(CARE),其特点是由计算机视觉引导系统引导的自主机械臂打印系统,可快速识别图像。CARE 满足了电疗对柔性、可拉伸和无线粘合生物电子器件日益增长的需求,适合快速适应患者个体情况,并以舒适的设计实现实用化。视觉引导系统集成了一个六轴机械臂,可以从多个角度进行扫描,提供复杂和弯曲伤口的三维地图。电极的尺寸和电源接收线圈的几何形状是 CARE 的重要组成部分,并通过 MATLAB 仿真确定,以确保高效的无线电力传输。三种具有不同流变特性的异质油墨可依次挤出并打印在柔性基底上,从而支持快速制造大型定制生物电子贴片。CARE 能以 88.8 mV mm-1 的电场强度刺激深度达 10 mm 的伤口。体外研究显示,CARE 能使人真皮成纤维细胞和人脐静脉内皮细胞的细胞迁移速度分别加快 1.6 倍和 1.9 倍。这项研究凸显了 CARE 作为一种临床伤口治疗方法在加速伤口愈合方面的潜力。
Large Scale Ultrafast Manufacturing of Wireless Soft Bioelectronics Enabled by Autonomous Robot Arm Printing Assisted by a Computer Vision-Enabled Guidance System for Personalized Wound Healing.
A Customized wound patch for Advanced tissue Regeneration with Electric field (CARE), featuring an autonomous robot arm printing system guided by a computer vision-enabled guidance system for fast image recognition is introduced. CARE addresses the growing demand for flexible, stretchable, and wireless adhesive bioelectronics tailored for electrotherapy, which is suitable for rapid adaptation to individual patients and practical implementation in a comfortable design. The visual guidance system integrating a 6-axis robot arm enables scans from multiple angles to provide a 3D map of complex and curved wounds. The size of electrodes and the geometries of power-receiving coil are essential components of the CARE and are determined by a MATLAB simulation, ensuring efficient wireless power transfer. Three heterogeneous inks possessing different rheological behaviors can be extruded and printed sequentially on the flexible substrates, supporting fast manufacturing of large customized bioelectronic patches. CARE can stimulate wounds up to 10 mm in depth with an electric field strength of 88.8 mV mm-1. In vitro studies reveal the ability to accelerate cell migration by a factor of 1.6 and 1.9 for human dermal fibroblasts and human umbilical vein endothelial cells, respectively. This study highlights the potential of CARE as a clinical wound therapy method to accelerate healing.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.