Xianyu Zhu, Lingling Zheng, Pengfei Zhao, Lingli Gao, Liang Wang, Jun Liu, Xu Yang, Hanrui Wei, Mingyu Zhang, Liang Yan, Han Lv, Jianhua Gong, Ji Gang Yang, Zhenchang Wang
{"title":"铁/铜双金属纳米酶与 177Lu 和丹参酮共同组装,用于四重协同肿瘤特异性治疗。","authors":"Xianyu Zhu, Lingling Zheng, Pengfei Zhao, Lingli Gao, Liang Wang, Jun Liu, Xu Yang, Hanrui Wei, Mingyu Zhang, Liang Yan, Han Lv, Jianhua Gong, Ji Gang Yang, Zhenchang Wang","doi":"10.1002/adhm.202402696","DOIUrl":null,"url":null,"abstract":"<p><p>The co-loading of radionuclides and small-molecule chemotherapeutic drugs as nanotheranostic platforms using nanozymes holds tremendous potential for imaging-guided synergistic therapy. This study presents such nanotheranostic platform (<sup>177</sup>Lu-MFeCu@Tan) via co-assembling <sup>177</sup>Lu radionuclide and tanshinone (Tan) into Fe/Cu dual-metal nanozyme (MFeCu). This platform simultaneously enables single-photon emission computed tomography (SPECT) imaging and a quadruple-synergistic tumor therapy approach, including internal radioisotope therapy (RIT), catalysis therapy, chemotherapy, and MFeCu-mediated ferroptosis and cuproptosis therapy. In this platform, the MFeCu can catalyze excessive intracellular hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to generate radical oxygen species (ROS) and deplete glutathione (GSH). The excess of H<sub>2</sub>O<sub>2</sub> and GSH are main factors for radioresistance and chemoresistance, reducing them can enhance chemotherapy and RIT. The generated ROS and depleted GSH further induce mitochondrial dysfunction and promote the aggregation of lipoylated dihydrolipoamide S-acetyltransferase and lipid peroxidation, causing the enhance of ferroptosis and cuproptosis. The in vitro and in vivo results demonstrate that this quadruple-synergistic approach shows significant therapeutic efficacy to complete tumor eradication and reduced recurrence in vivo. In conclusion, this work presents a promising strategy for designing SPECT imaging-guided quadruple-synergistic therapy and highlights the feasibility of developing a self-assembled radionuclide and small molecule chemotherapy drugs nanotherapeutic platform for combined treatment of cancer.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402696"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe/Cu Bimetallic Nanozyme Co-Assembled with <sup>177</sup>Lu and Tanshinone for Quadruple-Synergistic Tumor-Specific Therapy.\",\"authors\":\"Xianyu Zhu, Lingling Zheng, Pengfei Zhao, Lingli Gao, Liang Wang, Jun Liu, Xu Yang, Hanrui Wei, Mingyu Zhang, Liang Yan, Han Lv, Jianhua Gong, Ji Gang Yang, Zhenchang Wang\",\"doi\":\"10.1002/adhm.202402696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The co-loading of radionuclides and small-molecule chemotherapeutic drugs as nanotheranostic platforms using nanozymes holds tremendous potential for imaging-guided synergistic therapy. This study presents such nanotheranostic platform (<sup>177</sup>Lu-MFeCu@Tan) via co-assembling <sup>177</sup>Lu radionuclide and tanshinone (Tan) into Fe/Cu dual-metal nanozyme (MFeCu). This platform simultaneously enables single-photon emission computed tomography (SPECT) imaging and a quadruple-synergistic tumor therapy approach, including internal radioisotope therapy (RIT), catalysis therapy, chemotherapy, and MFeCu-mediated ferroptosis and cuproptosis therapy. In this platform, the MFeCu can catalyze excessive intracellular hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) to generate radical oxygen species (ROS) and deplete glutathione (GSH). The excess of H<sub>2</sub>O<sub>2</sub> and GSH are main factors for radioresistance and chemoresistance, reducing them can enhance chemotherapy and RIT. The generated ROS and depleted GSH further induce mitochondrial dysfunction and promote the aggregation of lipoylated dihydrolipoamide S-acetyltransferase and lipid peroxidation, causing the enhance of ferroptosis and cuproptosis. The in vitro and in vivo results demonstrate that this quadruple-synergistic approach shows significant therapeutic efficacy to complete tumor eradication and reduced recurrence in vivo. In conclusion, this work presents a promising strategy for designing SPECT imaging-guided quadruple-synergistic therapy and highlights the feasibility of developing a self-assembled radionuclide and small molecule chemotherapy drugs nanotherapeutic platform for combined treatment of cancer.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2402696\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202402696\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402696","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Fe/Cu Bimetallic Nanozyme Co-Assembled with 177Lu and Tanshinone for Quadruple-Synergistic Tumor-Specific Therapy.
The co-loading of radionuclides and small-molecule chemotherapeutic drugs as nanotheranostic platforms using nanozymes holds tremendous potential for imaging-guided synergistic therapy. This study presents such nanotheranostic platform (177Lu-MFeCu@Tan) via co-assembling 177Lu radionuclide and tanshinone (Tan) into Fe/Cu dual-metal nanozyme (MFeCu). This platform simultaneously enables single-photon emission computed tomography (SPECT) imaging and a quadruple-synergistic tumor therapy approach, including internal radioisotope therapy (RIT), catalysis therapy, chemotherapy, and MFeCu-mediated ferroptosis and cuproptosis therapy. In this platform, the MFeCu can catalyze excessive intracellular hydrogen peroxide (H2O2) to generate radical oxygen species (ROS) and deplete glutathione (GSH). The excess of H2O2 and GSH are main factors for radioresistance and chemoresistance, reducing them can enhance chemotherapy and RIT. The generated ROS and depleted GSH further induce mitochondrial dysfunction and promote the aggregation of lipoylated dihydrolipoamide S-acetyltransferase and lipid peroxidation, causing the enhance of ferroptosis and cuproptosis. The in vitro and in vivo results demonstrate that this quadruple-synergistic approach shows significant therapeutic efficacy to complete tumor eradication and reduced recurrence in vivo. In conclusion, this work presents a promising strategy for designing SPECT imaging-guided quadruple-synergistic therapy and highlights the feasibility of developing a self-assembled radionuclide and small molecule chemotherapy drugs nanotherapeutic platform for combined treatment of cancer.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.