{"title":"壳聚糖改性水凝胶微球包裹掺锌生物活性玻璃,通过抑制炎症和促进血管生成修复脊髓损伤","authors":"Xinjin Su, Changjiang Gu, Ziheng Wei, Yanqing Sun, Chao Zhu, Xiongsheng Chen","doi":"10.1002/adhm.202402129","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a common nerve injury caused by external force, resulting in sensory and motor impairments. Previous studies demonstrated that inhibiting the neuroinflammation promoted SCI repair. However, these approaches are low efficient, and lack targeting specificity, and even require repeated and high doses of systemic administration. To address such issues, in the present study, chitosan-modified hydrogel microspheres encapsulating with zinc-doped bioactive glasses (CS-MG@Zn/BGs) is constructed for targeted repair of SCI. In vitro, the CS-MG@Zn/BGs effectively inhibited the acute inflammatory response initiated by microglia and promoted angiogenic activities. In vivo, CS-MG@Zn/BGs targeted the injured site, and attenuated neuroinflammation by inhibiting microglia infiltration and modulating microglia polarization toward M2 type. Furthermore, it facilitated vascular reconstruction, neuronal differentiation, axonal regeneration and remyelination at the injured site, and thereby promoted motor function recovery of SCI mice. The in vitro and in vivo results implied that CS-MG@Zn/BGs may be a promising alternative for the rehabilitation of SCI.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402129"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan-Modified Hydrogel Microsphere Encapsulating Zinc-Doped Bioactive Glasses for Spinal Cord Injury Repair by Suppressing Inflammation and Promoting Angiogenesis.\",\"authors\":\"Xinjin Su, Changjiang Gu, Ziheng Wei, Yanqing Sun, Chao Zhu, Xiongsheng Chen\",\"doi\":\"10.1002/adhm.202402129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is a common nerve injury caused by external force, resulting in sensory and motor impairments. Previous studies demonstrated that inhibiting the neuroinflammation promoted SCI repair. However, these approaches are low efficient, and lack targeting specificity, and even require repeated and high doses of systemic administration. To address such issues, in the present study, chitosan-modified hydrogel microspheres encapsulating with zinc-doped bioactive glasses (CS-MG@Zn/BGs) is constructed for targeted repair of SCI. In vitro, the CS-MG@Zn/BGs effectively inhibited the acute inflammatory response initiated by microglia and promoted angiogenic activities. In vivo, CS-MG@Zn/BGs targeted the injured site, and attenuated neuroinflammation by inhibiting microglia infiltration and modulating microglia polarization toward M2 type. Furthermore, it facilitated vascular reconstruction, neuronal differentiation, axonal regeneration and remyelination at the injured site, and thereby promoted motor function recovery of SCI mice. The in vitro and in vivo results implied that CS-MG@Zn/BGs may be a promising alternative for the rehabilitation of SCI.</p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\" \",\"pages\":\"e2402129\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/adhm.202402129\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202402129","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Chitosan-Modified Hydrogel Microsphere Encapsulating Zinc-Doped Bioactive Glasses for Spinal Cord Injury Repair by Suppressing Inflammation and Promoting Angiogenesis.
Spinal cord injury (SCI) is a common nerve injury caused by external force, resulting in sensory and motor impairments. Previous studies demonstrated that inhibiting the neuroinflammation promoted SCI repair. However, these approaches are low efficient, and lack targeting specificity, and even require repeated and high doses of systemic administration. To address such issues, in the present study, chitosan-modified hydrogel microspheres encapsulating with zinc-doped bioactive glasses (CS-MG@Zn/BGs) is constructed for targeted repair of SCI. In vitro, the CS-MG@Zn/BGs effectively inhibited the acute inflammatory response initiated by microglia and promoted angiogenic activities. In vivo, CS-MG@Zn/BGs targeted the injured site, and attenuated neuroinflammation by inhibiting microglia infiltration and modulating microglia polarization toward M2 type. Furthermore, it facilitated vascular reconstruction, neuronal differentiation, axonal regeneration and remyelination at the injured site, and thereby promoted motor function recovery of SCI mice. The in vitro and in vivo results implied that CS-MG@Zn/BGs may be a promising alternative for the rehabilitation of SCI.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.