{"title":"高通量紫外线诱导合金电催化剂的合成与筛选。","authors":"Xu Li, Jianyun Cao, Jiexin Chen, Jiyang Xie, Chengding Gu, Xiaohong Li, Nigel Brandon, Wanbiao Hu","doi":"10.1002/smll.202406848","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of different elements in alloy catalysts can lead to improved activity as it provides opportunities to tune the electronic structures of surface atoms. However, the synthesis and performance screening of alloy catalysts through a vast chemical space are cost- and labor-intensive. Herein, a UV-induced, high-throughput method is reported for the synthesis and screening of alloy electrocatalysts in a fast and low-cost manner. A platform that integrates 37 mini-reaction-cells enables simultaneous UV-induced photodeposition of alloy nanoparticles with up to 37 compositions. These mini-reaction-cells further allow a transfer-free, high-throughput electrochemical performance screening. Binary (PtPd, PtIr, PdIr), ternary (PtPdIr, PtRuIr) and quaternary (PtPdRuIr) alloys have been synthesized with the activity of the binary alloys (57 compositions) for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) being screened. The predicted high performance of identified alloy compositions are subsequently validated by standard measurements using a rotating disk electrode configuration. It is found that the as-synthesized alloy nanoparticles are rich in twin boundaries and thus possess lattice strain. Density functional theory calculation implies that the high ORR activity of the screened Pt<sub>0.75</sub>Pd<sub>0.25</sub> alloy originates from the interplay between the differentiated adsorption sites because of alloying and the strain-induced modulation of the d-band center.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2406848"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Throughput UV-Induced Synthesis and Screening of Alloy Electrocatalysts.\",\"authors\":\"Xu Li, Jianyun Cao, Jiexin Chen, Jiyang Xie, Chengding Gu, Xiaohong Li, Nigel Brandon, Wanbiao Hu\",\"doi\":\"10.1002/smll.202406848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination of different elements in alloy catalysts can lead to improved activity as it provides opportunities to tune the electronic structures of surface atoms. However, the synthesis and performance screening of alloy catalysts through a vast chemical space are cost- and labor-intensive. Herein, a UV-induced, high-throughput method is reported for the synthesis and screening of alloy electrocatalysts in a fast and low-cost manner. A platform that integrates 37 mini-reaction-cells enables simultaneous UV-induced photodeposition of alloy nanoparticles with up to 37 compositions. These mini-reaction-cells further allow a transfer-free, high-throughput electrochemical performance screening. Binary (PtPd, PtIr, PdIr), ternary (PtPdIr, PtRuIr) and quaternary (PtPdRuIr) alloys have been synthesized with the activity of the binary alloys (57 compositions) for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) being screened. The predicted high performance of identified alloy compositions are subsequently validated by standard measurements using a rotating disk electrode configuration. It is found that the as-synthesized alloy nanoparticles are rich in twin boundaries and thus possess lattice strain. Density functional theory calculation implies that the high ORR activity of the screened Pt<sub>0.75</sub>Pd<sub>0.25</sub> alloy originates from the interplay between the differentiated adsorption sites because of alloying and the strain-induced modulation of the d-band center.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2406848\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202406848\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406848","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Throughput UV-Induced Synthesis and Screening of Alloy Electrocatalysts.
The combination of different elements in alloy catalysts can lead to improved activity as it provides opportunities to tune the electronic structures of surface atoms. However, the synthesis and performance screening of alloy catalysts through a vast chemical space are cost- and labor-intensive. Herein, a UV-induced, high-throughput method is reported for the synthesis and screening of alloy electrocatalysts in a fast and low-cost manner. A platform that integrates 37 mini-reaction-cells enables simultaneous UV-induced photodeposition of alloy nanoparticles with up to 37 compositions. These mini-reaction-cells further allow a transfer-free, high-throughput electrochemical performance screening. Binary (PtPd, PtIr, PdIr), ternary (PtPdIr, PtRuIr) and quaternary (PtPdRuIr) alloys have been synthesized with the activity of the binary alloys (57 compositions) for hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) being screened. The predicted high performance of identified alloy compositions are subsequently validated by standard measurements using a rotating disk electrode configuration. It is found that the as-synthesized alloy nanoparticles are rich in twin boundaries and thus possess lattice strain. Density functional theory calculation implies that the high ORR activity of the screened Pt0.75Pd0.25 alloy originates from the interplay between the differentiated adsorption sites because of alloying and the strain-induced modulation of the d-band center.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.