Roberto Gedaly, Gabriel Orozco, Lillie J Lewis, Deepa Valvi, Fanny Chapelin, Aman Khurana, Giovanna E Hidalgo, Aaron Shmookler, Aashutosh Tripathi, Cuiping Zhang, Joseph B Zwischenberger, Francesc Marti
{"title":"线粒体氧化应激对用于临床移植的调节性 T 细胞制造的影响:一项试点研究的结果。","authors":"Roberto Gedaly, Gabriel Orozco, Lillie J Lewis, Deepa Valvi, Fanny Chapelin, Aman Khurana, Giovanna E Hidalgo, Aaron Shmookler, Aashutosh Tripathi, Cuiping Zhang, Joseph B Zwischenberger, Francesc Marti","doi":"10.1016/j.ajt.2024.10.024","DOIUrl":null,"url":null,"abstract":"<p><p>The manufacturing process of Regulatory T (Treg) cells for clinical application begins with the positive selection of CD25<sup>+</sup> cells using superparamagnetic iron-oxide nanoparticle (SPION)-conjugated anti-CD25 antibodies (spCD25) and immunomagnetic cell separation technology. Our findings revealed that the interaction of spCD25 with its cell target induced the internalization of the complex spCD25-Interleukin-2 Receptor. Accumulation of intracellular spCD25 triggered oxidative stress, causing delayed Treg expansion and temporary reduction in suppressor activity. This activation delay hindered the efficient generation of clinically competent cells. During this early phase, Treg cells exhibited elevated mitochondrial superoxide and lipid peroxidation levels, with concomitant decrease on mitochondrial respiration rates. The results uncovered the increased mitochondrial unfolded protein response (mitoUPR). This protective, redox-sensitive activity is inherent of Tregs when contrasted with homologous, spCD25-treated, conventional T cells. While the temporary effects of spCD25 on clinically competent cells did not impede their use in a safety/feasibility pilot study with kidney transplant recipients*, it is reasonable to anticipate a potential reduction in their therapeutic efficacy. The mechanistic understanding of the adverse effects triggered by spCD25 is crucial for improving the manufacturing process of clinically competent Treg cells, a pivotal step in the successful implementation of immune cell therapy in transplantation. *Clinical trial registration number NCT03284242 at ClinicalTrials.gov.</p>","PeriodicalId":123,"journal":{"name":"American Journal of Transplantation","volume":" ","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of mitochondrial oxidative stress on Regulatory T Cell manufacturing for clinical application in transplantation: results from a pilot study.\",\"authors\":\"Roberto Gedaly, Gabriel Orozco, Lillie J Lewis, Deepa Valvi, Fanny Chapelin, Aman Khurana, Giovanna E Hidalgo, Aaron Shmookler, Aashutosh Tripathi, Cuiping Zhang, Joseph B Zwischenberger, Francesc Marti\",\"doi\":\"10.1016/j.ajt.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The manufacturing process of Regulatory T (Treg) cells for clinical application begins with the positive selection of CD25<sup>+</sup> cells using superparamagnetic iron-oxide nanoparticle (SPION)-conjugated anti-CD25 antibodies (spCD25) and immunomagnetic cell separation technology. Our findings revealed that the interaction of spCD25 with its cell target induced the internalization of the complex spCD25-Interleukin-2 Receptor. Accumulation of intracellular spCD25 triggered oxidative stress, causing delayed Treg expansion and temporary reduction in suppressor activity. This activation delay hindered the efficient generation of clinically competent cells. During this early phase, Treg cells exhibited elevated mitochondrial superoxide and lipid peroxidation levels, with concomitant decrease on mitochondrial respiration rates. The results uncovered the increased mitochondrial unfolded protein response (mitoUPR). This protective, redox-sensitive activity is inherent of Tregs when contrasted with homologous, spCD25-treated, conventional T cells. While the temporary effects of spCD25 on clinically competent cells did not impede their use in a safety/feasibility pilot study with kidney transplant recipients*, it is reasonable to anticipate a potential reduction in their therapeutic efficacy. The mechanistic understanding of the adverse effects triggered by spCD25 is crucial for improving the manufacturing process of clinically competent Treg cells, a pivotal step in the successful implementation of immune cell therapy in transplantation. *Clinical trial registration number NCT03284242 at ClinicalTrials.gov.</p>\",\"PeriodicalId\":123,\"journal\":{\"name\":\"American Journal of Transplantation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Transplantation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajt.2024.10.024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajt.2024.10.024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
Effect of mitochondrial oxidative stress on Regulatory T Cell manufacturing for clinical application in transplantation: results from a pilot study.
The manufacturing process of Regulatory T (Treg) cells for clinical application begins with the positive selection of CD25+ cells using superparamagnetic iron-oxide nanoparticle (SPION)-conjugated anti-CD25 antibodies (spCD25) and immunomagnetic cell separation technology. Our findings revealed that the interaction of spCD25 with its cell target induced the internalization of the complex spCD25-Interleukin-2 Receptor. Accumulation of intracellular spCD25 triggered oxidative stress, causing delayed Treg expansion and temporary reduction in suppressor activity. This activation delay hindered the efficient generation of clinically competent cells. During this early phase, Treg cells exhibited elevated mitochondrial superoxide and lipid peroxidation levels, with concomitant decrease on mitochondrial respiration rates. The results uncovered the increased mitochondrial unfolded protein response (mitoUPR). This protective, redox-sensitive activity is inherent of Tregs when contrasted with homologous, spCD25-treated, conventional T cells. While the temporary effects of spCD25 on clinically competent cells did not impede their use in a safety/feasibility pilot study with kidney transplant recipients*, it is reasonable to anticipate a potential reduction in their therapeutic efficacy. The mechanistic understanding of the adverse effects triggered by spCD25 is crucial for improving the manufacturing process of clinically competent Treg cells, a pivotal step in the successful implementation of immune cell therapy in transplantation. *Clinical trial registration number NCT03284242 at ClinicalTrials.gov.
期刊介绍:
The American Journal of Transplantation is a leading journal in the field of transplantation. It serves as a forum for debate and reassessment, an agent of change, and a major platform for promoting understanding, improving results, and advancing science. Published monthly, it provides an essential resource for researchers and clinicians worldwide.
The journal publishes original articles, case reports, invited reviews, letters to the editor, critical reviews, news features, consensus documents, and guidelines over 12 issues a year. It covers all major subject areas in transplantation, including thoracic (heart, lung), abdominal (kidney, liver, pancreas, islets), tissue and stem cell transplantation, organ and tissue donation and preservation, tissue injury, repair, inflammation, and aging, histocompatibility, drugs and pharmacology, graft survival, and prevention of graft dysfunction and failure. It also explores ethical and social issues in the field.