中风诱发的肾功能障碍:脑-肾轴的基本机制和挑战。

IF 4.8 1区 医学 Q1 NEUROSCIENCES
Xi Chen, Dong-Xiao Yang, Heng Zhao, Hong-Fei Zhang, Pu Hong
{"title":"中风诱发的肾功能障碍:脑-肾轴的基本机制和挑战。","authors":"Xi Chen,&nbsp;Dong-Xiao Yang,&nbsp;Heng Zhao,&nbsp;Hong-Fei Zhang,&nbsp;Pu Hong","doi":"10.1111/cns.70114","DOIUrl":null,"url":null,"abstract":"<p>Stroke, a major neurological disorder and a leading cause of disability and death, often inflicts damage upon other organs, particularly the kidneys. While chronic kidney disease (CKD) has long been established as a significant risk factor for cerebrovascular disease, stroke can induce renal dysfunction, manifesting as acute kidney injury (AKI) or CKD. Mounting clinical and basic research evidence supports the existence of a bidirectional brain-kidney crosstalk following stroke, implicating specific mechanisms and pathways in stroke-related renal dysfunction. This review analyzes pertinent experimental studies, elucidating the underlying mechanisms of this cerebro-renal interaction following stroke. Additionally, we summarize the current landscape of clinical research investigating brain-kidney interplay and discuss potential challenges in the future. By enhancing our understanding of the scientific underpinnings of brain-kidney crosstalk, this review paves the way for improved treatment strategies and outcomes for stroke patients. Recognizing the intricate interplay between the brain and kidneys after stroke holds profound clinical implications.</p>","PeriodicalId":154,"journal":{"name":"CNS Neuroscience & Therapeutics","volume":"30 11","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557443/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stroke-Induced Renal Dysfunction: Underlying Mechanisms and Challenges of the Brain–Kidney Axis\",\"authors\":\"Xi Chen,&nbsp;Dong-Xiao Yang,&nbsp;Heng Zhao,&nbsp;Hong-Fei Zhang,&nbsp;Pu Hong\",\"doi\":\"10.1111/cns.70114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stroke, a major neurological disorder and a leading cause of disability and death, often inflicts damage upon other organs, particularly the kidneys. While chronic kidney disease (CKD) has long been established as a significant risk factor for cerebrovascular disease, stroke can induce renal dysfunction, manifesting as acute kidney injury (AKI) or CKD. Mounting clinical and basic research evidence supports the existence of a bidirectional brain-kidney crosstalk following stroke, implicating specific mechanisms and pathways in stroke-related renal dysfunction. This review analyzes pertinent experimental studies, elucidating the underlying mechanisms of this cerebro-renal interaction following stroke. Additionally, we summarize the current landscape of clinical research investigating brain-kidney interplay and discuss potential challenges in the future. By enhancing our understanding of the scientific underpinnings of brain-kidney crosstalk, this review paves the way for improved treatment strategies and outcomes for stroke patients. Recognizing the intricate interplay between the brain and kidneys after stroke holds profound clinical implications.</p>\",\"PeriodicalId\":154,\"journal\":{\"name\":\"CNS Neuroscience & Therapeutics\",\"volume\":\"30 11\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11557443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Neuroscience & Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cns.70114\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Neuroscience & Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cns.70114","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脑卒中是一种主要的神经系统疾病,也是导致残疾和死亡的主要原因,通常会对其他器官造成损害,尤其是肾脏。慢性肾脏疾病(CKD)早已被认为是脑血管疾病的重要危险因素,而脑卒中可诱发肾功能障碍,表现为急性肾损伤(AKI)或 CKD。越来越多的临床和基础研究证据支持脑卒中后存在脑-肾双向串联,这与脑卒中相关肾功能障碍的特定机制和途径有关。本综述分析了相关的实验研究,阐明了脑卒中后脑肾相互作用的基本机制。此外,我们还总结了目前研究脑肾相互作用的临床研究情况,并讨论了未来可能面临的挑战。通过加强我们对脑肾相互作用科学基础的理解,本综述为改善脑卒中患者的治疗策略和预后铺平了道路。认识中风后大脑和肾脏之间错综复杂的相互作用具有深远的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stroke-Induced Renal Dysfunction: Underlying Mechanisms and Challenges of the Brain–Kidney Axis

Stroke-Induced Renal Dysfunction: Underlying Mechanisms and Challenges of the Brain–Kidney Axis

Stroke, a major neurological disorder and a leading cause of disability and death, often inflicts damage upon other organs, particularly the kidneys. While chronic kidney disease (CKD) has long been established as a significant risk factor for cerebrovascular disease, stroke can induce renal dysfunction, manifesting as acute kidney injury (AKI) or CKD. Mounting clinical and basic research evidence supports the existence of a bidirectional brain-kidney crosstalk following stroke, implicating specific mechanisms and pathways in stroke-related renal dysfunction. This review analyzes pertinent experimental studies, elucidating the underlying mechanisms of this cerebro-renal interaction following stroke. Additionally, we summarize the current landscape of clinical research investigating brain-kidney interplay and discuss potential challenges in the future. By enhancing our understanding of the scientific underpinnings of brain-kidney crosstalk, this review paves the way for improved treatment strategies and outcomes for stroke patients. Recognizing the intricate interplay between the brain and kidneys after stroke holds profound clinical implications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CNS Neuroscience & Therapeutics
CNS Neuroscience & Therapeutics 医学-神经科学
CiteScore
7.30
自引率
12.70%
发文量
240
审稿时长
2 months
期刊介绍: CNS Neuroscience & Therapeutics provides a medium for rapid publication of original clinical, experimental, and translational research papers, timely reviews and reports of novel findings of therapeutic relevance to the central nervous system, as well as papers related to clinical pharmacology, drug development and novel methodologies for drug evaluation. The journal focuses on neurological and psychiatric diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, depression, schizophrenia, epilepsy, and drug abuse.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信