通过扰动自由能景观调节粗粒度动力学

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Ishan Nadkarni, Jinu Jeong, Bugra Yalcin, Narayana R Aluru
{"title":"通过扰动自由能景观调节粗粒度动力学","authors":"Ishan Nadkarni, Jinu Jeong, Bugra Yalcin, Narayana R Aluru","doi":"10.1021/acs.jpca.4c04530","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce an approach to describe the long-time dynamics of multiatomic molecules by modulating the free energy landscape (FEL) to capture dominant features of the energy-barrier crossing dynamics of the all-atom (AA) system. Notably, we establish that the self-diffusion coefficient of coarse-grained (CG) systems can be accurately delineated by enhancing conservative force fields with high-frequency perturbations. Using theoretical arguments, we show that these perturbations do not alter the lower-order distribution functions, thereby preserving the structure of the AA system after coarse-graining. We demonstrate the utility of this approach using molecular dynamics simulations of simple molecules in bulk with distinct dynamical characteristics with and without time scale separations as well as for inhomogeneous systems where a fluid is confined in a slit-like nanochannel. Additionally, we also apply our approach to more powerful many-body potentials optimized by using machine learning (ML).</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulating Coarse-Grained Dynamics by Perturbing Free Energy Landscapes.\",\"authors\":\"Ishan Nadkarni, Jinu Jeong, Bugra Yalcin, Narayana R Aluru\",\"doi\":\"10.1021/acs.jpca.4c04530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We introduce an approach to describe the long-time dynamics of multiatomic molecules by modulating the free energy landscape (FEL) to capture dominant features of the energy-barrier crossing dynamics of the all-atom (AA) system. Notably, we establish that the self-diffusion coefficient of coarse-grained (CG) systems can be accurately delineated by enhancing conservative force fields with high-frequency perturbations. Using theoretical arguments, we show that these perturbations do not alter the lower-order distribution functions, thereby preserving the structure of the AA system after coarse-graining. We demonstrate the utility of this approach using molecular dynamics simulations of simple molecules in bulk with distinct dynamical characteristics with and without time scale separations as well as for inhomogeneous systems where a fluid is confined in a slit-like nanochannel. Additionally, we also apply our approach to more powerful many-body potentials optimized by using machine learning (ML).</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c04530\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c04530","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种通过调节自由能景观(FEL)来描述多原子分子长时动力学的方法,以捕捉全原子(AA)系统能障穿越动力学的主要特征。值得注意的是,我们发现粗粒度(CG)系统的自扩散系数可以通过增强保守力场的高频扰动来精确划定。通过理论论证,我们证明这些扰动不会改变低阶分布函数,从而保留了粗粒化后 AA 系统的结构。我们用分子动力学模拟了具有和不具有时间尺度分离的不同动力学特征的简单大分子,以及流体被限制在狭缝状纳米通道中的非均质系统,证明了这种方法的实用性。此外,我们还将我们的方法应用于通过机器学习(ML)优化的更强大的多体势能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modulating Coarse-Grained Dynamics by Perturbing Free Energy Landscapes.

We introduce an approach to describe the long-time dynamics of multiatomic molecules by modulating the free energy landscape (FEL) to capture dominant features of the energy-barrier crossing dynamics of the all-atom (AA) system. Notably, we establish that the self-diffusion coefficient of coarse-grained (CG) systems can be accurately delineated by enhancing conservative force fields with high-frequency perturbations. Using theoretical arguments, we show that these perturbations do not alter the lower-order distribution functions, thereby preserving the structure of the AA system after coarse-graining. We demonstrate the utility of this approach using molecular dynamics simulations of simple molecules in bulk with distinct dynamical characteristics with and without time scale separations as well as for inhomogeneous systems where a fluid is confined in a slit-like nanochannel. Additionally, we also apply our approach to more powerful many-body potentials optimized by using machine learning (ML).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信