以热膨胀蛋白胶束为模板的带正电的二氧化硅纳米粒子的仿生矿化:应用于分层和复合超结构的静电组装。

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-11-11 DOI:10.1039/d4sm00907j
Nada Y Naser, William C Wixson, Helen Larson, Brandi M Cossairt, Lilo D Pozzo, François Baneyx
{"title":"以热膨胀蛋白胶束为模板的带正电的二氧化硅纳米粒子的仿生矿化:应用于分层和复合超结构的静电组装。","authors":"Nada Y Naser, William C Wixson, Helen Larson, Brandi M Cossairt, Lilo D Pozzo, François Baneyx","doi":"10.1039/d4sm00907j","DOIUrl":null,"url":null,"abstract":"<p><p>High information content building blocks offer a path toward the construction of precision materials by supporting the organization and reconfiguration of organic and inorganic components through engineered functions. Here, we combine thermoresponsiveness with biomimetic mineralization by fusing the Car9 silica-binding dodecapeptide to the C-terminus of the (VPGVG)<sub>54</sub> elastin-like polypeptide (ELP). Using small angle X-ray scattering, we show that the short Car9 cationic block is sufficient to promote the conversion of disordered unimers into 30 nm micelles comprising about 150 proteins, 5 °C above the transition temperature of the ELP. While both species catalyze self-limiting silica precipitation, micelles template the mineralization of highly monodisperse (62 nm) nanoparticles, while unimers yield larger polydisperse species. Strikingly, and unlike traditional synthetic silica, these particles exhibit a positive surface charge, likely due to cationic Car9 sidechains projecting from their surface. Capitalizing on the high monodispersity and positive charge of the micelle-templated products, we use smaller silica and gold particles bearing a native negative charge to create a variety of superstructures <i>via</i> electrostatic co-assembly. This simple biomimetic route to positively charged silica eliminates the need for multiple precursors or surface modifications and enables the rapid creation of single-material and composite architectures in which components of different sizes or compositions are well dispersed and integrated.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic mineralization of positively charged silica nanoparticles templated by thermoresponsive protein micelles: applications to electrostatic assembly of hierarchical and composite superstructures.\",\"authors\":\"Nada Y Naser, William C Wixson, Helen Larson, Brandi M Cossairt, Lilo D Pozzo, François Baneyx\",\"doi\":\"10.1039/d4sm00907j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High information content building blocks offer a path toward the construction of precision materials by supporting the organization and reconfiguration of organic and inorganic components through engineered functions. Here, we combine thermoresponsiveness with biomimetic mineralization by fusing the Car9 silica-binding dodecapeptide to the C-terminus of the (VPGVG)<sub>54</sub> elastin-like polypeptide (ELP). Using small angle X-ray scattering, we show that the short Car9 cationic block is sufficient to promote the conversion of disordered unimers into 30 nm micelles comprising about 150 proteins, 5 °C above the transition temperature of the ELP. While both species catalyze self-limiting silica precipitation, micelles template the mineralization of highly monodisperse (62 nm) nanoparticles, while unimers yield larger polydisperse species. Strikingly, and unlike traditional synthetic silica, these particles exhibit a positive surface charge, likely due to cationic Car9 sidechains projecting from their surface. Capitalizing on the high monodispersity and positive charge of the micelle-templated products, we use smaller silica and gold particles bearing a native negative charge to create a variety of superstructures <i>via</i> electrostatic co-assembly. This simple biomimetic route to positively charged silica eliminates the need for multiple precursors or surface modifications and enables the rapid creation of single-material and composite architectures in which components of different sizes or compositions are well dispersed and integrated.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4sm00907j\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sm00907j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高信息含量构建模块通过工程功能支持有机和无机成分的组织和重组,为构建精密材料提供了一条途径。在这里,我们通过将 Car9 二氧化硅结合十二肽与 (VPGVG)54 弹性蛋白样多肽 (ELP) 的 C 端融合,将热响应性与仿生矿化结合起来。利用小角 X 射线散射,我们发现短 Car9 阳离子嵌段足以促进无序单聚体转化为 30 nm 的胶束,其中包含约 150 个蛋白质,比 ELP 的转变温度高 5 °C。虽然这两种物质都能催化自限性二氧化硅沉淀,但胶束是高度单分散(62 nm)纳米颗粒矿化的模板,而单聚物则产生较大的多分散物质。引人注目的是,与传统的合成二氧化硅不同,这些微粒表面带有正电荷,这可能是由于阳离子 Car9 侧链从其表面伸出所致。利用胶束模板产品的高单分散性和正电荷,我们使用带有原生负电荷的较小二氧化硅和金颗粒,通过静电共组装创造出各种超结构。这种获得带正电的二氧化硅的简单仿生途径无需使用多种前体或进行表面改性,因此能快速制造出单一材料和复合材料结构,其中不同尺寸或成分的组分能很好地分散和整合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomimetic mineralization of positively charged silica nanoparticles templated by thermoresponsive protein micelles: applications to electrostatic assembly of hierarchical and composite superstructures.

High information content building blocks offer a path toward the construction of precision materials by supporting the organization and reconfiguration of organic and inorganic components through engineered functions. Here, we combine thermoresponsiveness with biomimetic mineralization by fusing the Car9 silica-binding dodecapeptide to the C-terminus of the (VPGVG)54 elastin-like polypeptide (ELP). Using small angle X-ray scattering, we show that the short Car9 cationic block is sufficient to promote the conversion of disordered unimers into 30 nm micelles comprising about 150 proteins, 5 °C above the transition temperature of the ELP. While both species catalyze self-limiting silica precipitation, micelles template the mineralization of highly monodisperse (62 nm) nanoparticles, while unimers yield larger polydisperse species. Strikingly, and unlike traditional synthetic silica, these particles exhibit a positive surface charge, likely due to cationic Car9 sidechains projecting from their surface. Capitalizing on the high monodispersity and positive charge of the micelle-templated products, we use smaller silica and gold particles bearing a native negative charge to create a variety of superstructures via electrostatic co-assembly. This simple biomimetic route to positively charged silica eliminates the need for multiple precursors or surface modifications and enables the rapid creation of single-material and composite architectures in which components of different sizes or compositions are well dispersed and integrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Where physics meets chemistry meets biology for fundamental soft matter research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信