利用实时库搜索为糖蛋白组学自主选择解离类型

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2024-12-06 Epub Date: 2024-11-12 DOI:10.1021/acs.jproteome.4c00723
Emmajay Sutherland, Tim S Veth, William D Barshop, Jacob H Russell, Kathryn Kothlow, Jesse D Canterbury, Christopher Mullen, David Bergen, Jingjing Huang, Vlad Zabrouskov, Romain Huguet, Graeme C McAlister, Nicholas M Riley
{"title":"利用实时库搜索为糖蛋白组学自主选择解离类型","authors":"Emmajay Sutherland, Tim S Veth, William D Barshop, Jacob H Russell, Kathryn Kothlow, Jesse D Canterbury, Christopher Mullen, David Bergen, Jingjing Huang, Vlad Zabrouskov, Romain Huguet, Graeme C McAlister, Nicholas M Riley","doi":"10.1021/acs.jproteome.4c00723","DOIUrl":null,"url":null,"abstract":"<p><p>Tandem mass spectrometry (MS/MS) is the gold standard for intact glycopeptide identification, enabling peptide sequence elucidation and site-specific localization of glycan compositions. Beam-type collisional activation is generally sufficient for <i>N-</i>glycopeptides, while electron-driven dissociation is crucial for site localization in <i>O-</i>glycopeptides. Modern glycoproteomic methods often employ multiple dissociation techniques within a single LC-MS/MS analysis, but this approach frequently sacrifices sensitivity when analyzing multiple glycopeptide classes simultaneously. Here we explore the utility of intelligent data acquisition for glycoproteomics through real-time library searching (RTLS) to match oxonium ion patterns for on-the-fly selection of the appropriate dissociation method. By matching dissociation method with glycopeptide class, this autonomous dissociation-type selection (ADS) generates equivalent numbers of <i>N-</i>glycopeptide identifications relative to traditional beam-type collisional activation methods while also yielding comparable numbers of site-localized <i>O-</i>glycopeptide identifications relative to conventional electron transfer dissociation-based methods. The ADS approach represents a step forward in glycoproteomics throughput by enabling site-specific characterization of both <i>N-</i>and <i>O-</i>glycopeptides within the same LC-MS/MS acquisition.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"5606-5614"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Dissociation-type Selection for Glycoproteomics Using a Real-Time Library Search.\",\"authors\":\"Emmajay Sutherland, Tim S Veth, William D Barshop, Jacob H Russell, Kathryn Kothlow, Jesse D Canterbury, Christopher Mullen, David Bergen, Jingjing Huang, Vlad Zabrouskov, Romain Huguet, Graeme C McAlister, Nicholas M Riley\",\"doi\":\"10.1021/acs.jproteome.4c00723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tandem mass spectrometry (MS/MS) is the gold standard for intact glycopeptide identification, enabling peptide sequence elucidation and site-specific localization of glycan compositions. Beam-type collisional activation is generally sufficient for <i>N-</i>glycopeptides, while electron-driven dissociation is crucial for site localization in <i>O-</i>glycopeptides. Modern glycoproteomic methods often employ multiple dissociation techniques within a single LC-MS/MS analysis, but this approach frequently sacrifices sensitivity when analyzing multiple glycopeptide classes simultaneously. Here we explore the utility of intelligent data acquisition for glycoproteomics through real-time library searching (RTLS) to match oxonium ion patterns for on-the-fly selection of the appropriate dissociation method. By matching dissociation method with glycopeptide class, this autonomous dissociation-type selection (ADS) generates equivalent numbers of <i>N-</i>glycopeptide identifications relative to traditional beam-type collisional activation methods while also yielding comparable numbers of site-localized <i>O-</i>glycopeptide identifications relative to conventional electron transfer dissociation-based methods. The ADS approach represents a step forward in glycoproteomics throughput by enabling site-specific characterization of both <i>N-</i>and <i>O-</i>glycopeptides within the same LC-MS/MS acquisition.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"5606-5614\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00723\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00723","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

串联质谱法(MS/MS)是完整糖肽鉴定的黄金标准,可用于阐明肽序列和糖组成的特定位点定位。对于 N 型糖肽,束型碰撞活化通常就足够了,而对于 O 型糖肽的位点定位,电子驱动解离则至关重要。现代糖蛋白组学方法通常在一次 LC-MS/MS 分析中采用多种解离技术,但这种方法在同时分析多个糖肽类别时往往会牺牲灵敏度。在这里,我们通过实时库搜索(RTLS)来匹配羰基离子模式,以即时选择合适的解离方法,从而探索糖蛋白组学智能数据采集的实用性。通过将解离方法与糖肽类别相匹配,这种自主解离类型选择(ADS)与传统的束型碰撞活化方法相比,能产生数量相当的 N-糖肽鉴定结果,同时与传统的基于电子转移的解离方法相比,也能产生数量相当的位点定位 O-糖肽鉴定结果。ADS 方法在同一 LC-MS/MS 采集过程中实现了 N 和 O 糖肽的位点特异性鉴定,代表着糖蛋白组学通量向前迈进了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Autonomous Dissociation-type Selection for Glycoproteomics Using a Real-Time Library Search.

Tandem mass spectrometry (MS/MS) is the gold standard for intact glycopeptide identification, enabling peptide sequence elucidation and site-specific localization of glycan compositions. Beam-type collisional activation is generally sufficient for N-glycopeptides, while electron-driven dissociation is crucial for site localization in O-glycopeptides. Modern glycoproteomic methods often employ multiple dissociation techniques within a single LC-MS/MS analysis, but this approach frequently sacrifices sensitivity when analyzing multiple glycopeptide classes simultaneously. Here we explore the utility of intelligent data acquisition for glycoproteomics through real-time library searching (RTLS) to match oxonium ion patterns for on-the-fly selection of the appropriate dissociation method. By matching dissociation method with glycopeptide class, this autonomous dissociation-type selection (ADS) generates equivalent numbers of N-glycopeptide identifications relative to traditional beam-type collisional activation methods while also yielding comparable numbers of site-localized O-glycopeptide identifications relative to conventional electron transfer dissociation-based methods. The ADS approach represents a step forward in glycoproteomics throughput by enabling site-specific characterization of both N-and O-glycopeptides within the same LC-MS/MS acquisition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信